Skip to main content
Log in

Interactions in the Quaternary Systems H 2 OY(NO 3 ) 3 La(NO 3 ) 3 Pr(NO 3 ) 3 , H 2 OY(NO 3 ) 3 La(NO 3 ) 3 Nd(NO 3 ) 3 and H 2 OY(NO 3 ) 3 Pr(NO 3 ) 3 Nd(NO 3 ) 3 to Very High Concentrations

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Isopiestic measurements have been carried out for the quaternary systems H2O−Y(NO3)3−La(NO3)3−Pr(NO3)3, H2O−Y(NO3)3−La(NO3)3−Nd(NO3)3 and H2O−Y(NO3)3−Pr(NO3)3−Nd(NO3)3 at 298.15 K to near saturation. The measurements can be represented by a modified Pitzer ion–interaction model extending to C (3) within the experimental uncertainty over the full concentration range. In addition, these systems obey the Zdanovskii-Stokes-Robinson model or partial ideal solution model within isopiestic accuracy, indicating zero solute-solute interchange energy, which is consistent with the nature of salts of the trivalent rare earth ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zdanovskii, A.B.: Regularities in the property variations of mixed solutions, Tr. Solyanoi Lab. Akad. Nauk SSSR, No. 6, 5–70 (1936)

  2. Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute—solvent equilibria. J. Phys. Chem. 70, 2126–2131 (1966)

    CAS  Google Scholar 

  3. Chen, H., Sangster, J., Teng, T.T., Lenzi, F.: A general method of predicting the water activity of ternary aqueous solutions from binary data. Can. J. Chem. Eng. 51, 234–241 (1973)

    Article  CAS  Google Scholar 

  4. Wang, Z.-C.: The linear concentration rules at constant partial molar quantity Ψ 0—extension of Turkdogan's rule and Zdanovskii's rule. Acta Metall. Sinica 16, 195–206 (1980)

    CAS  Google Scholar 

  5. Wang, Z.-C.: Thermodynamics of multicomponent systems at constant partial molar quantity Ψ 0— Thermodynamical aspect of iso-Ψ 0 rules of Zdanovskii-type and Turkdogan-type. Acta Metall. Sinica 17, 168–176 (1981)

    CAS  Google Scholar 

  6. Wang, Z.-C.: The Theory of Partial Simple Solutions for Multicomponent Systems, in First China-USA Bilateral Metallurgical Conference, p 121–136, The Metall. Ind. Press, Beijing (1981)

    Google Scholar 

  7. Wang, Z.-C.: The theory of partial simple solutions for multicomponent systems. Acta Metall. Sinica 18, 141–152 (1982)

    CAS  Google Scholar 

  8. Wang, Z.-C., Zhang, X.-H., He, Y.-Z., Bao, Y.-H.: High-temperature isopiestic studies on (1 , y)Hg + y(1 , t)Bi + ytSn(1) at 600 K. Comparison with the partial ideal solution model. J. Chem. Thermodyn. 21, 653–665 (1989)

    Article  CAS  Google Scholar 

  9. Wang, Z.-C., Lück, R., Predel, B.: Pure component A + classically ideal solution (B + C + ⋯) = ?. J. Chem. Soc. Faraday Trans. 86, 3641–3646 (1990)

    Article  CAS  Google Scholar 

  10. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  11. Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)

    Article  CAS  Google Scholar 

  12. Pitzer, K.S.: In Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 3, K.S. Pitzer, ed., CRC Press, Boca Raton, FL (1991)

    Google Scholar 

  13. Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. V. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)

    Article  CAS  Google Scholar 

  14. Archer, D.G.: Thermodynamic properties of the NaBr + H2O system. J. Phys. Chem. Ref. Data 20, 509–555 (1991)

    CAS  Google Scholar 

  15. Pitzer, K.S., Wang, P., Rard, J.A., Clegg, S.L.: Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; Equations for CaCl2 and MgCl2. J. Solution Chem. 28, 265–282 (1999)

    CAS  Google Scholar 

  16. Rard, J.A., Wijesinghe, A.M.: Conversion of parameters between different variants of Pitzer's ion-interaction model, both with and without ionic strength dependent higher-order terms. J. Chem. Thermodyn. 35, 439–473 (2003)

    Article  CAS  Google Scholar 

  17. Filippov, V.K., Charykov, N.A., Rumyantsev, V.: Extension of the Pitzer method to aqueous salt systems with solution phase complexing. Dokl. Akad. Nauk. SSSR Fiz. Khim. 296, 665–668 (1987)

    CAS  Google Scholar 

  18. Anstiss, R.G., Pitzer, K.S.: Thermodynamics of very concentrated aqueous electrolytes: LiCl, ZnCl2, and ZnCl2NaCl at 25 °C. J. Solution Chem. 20, 849–858 (1991)

    Article  CAS  Google Scholar 

  19. Spedding, F.H., Weber, H.O., Saeger, V.W., Petheram, H.H., Rard, J.A., Habenschuss, A.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 1. The rare earth chlorides. J. Chem. Eng. Data 21, 341–360 (1976)

    Article  CAS  Google Scholar 

  20. Rard, J.A., Weber, H.O., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 1. The rare earth perchlorates. J. Chem. Eng. Data 22, 187–201 (1977)

    Article  CAS  Google Scholar 

  21. Rard, J.A., Shiers, L.E., Heiser, D.J., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 3. The rare earth nitrates. J. Chem. Eng. Data 22, 337–347 (1977)

    Article  CAS  Google Scholar 

  22. Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. La(NO3)3, Pr(NO3)3, and Nd(NO3)3. J. Chem. Eng. Data 24, 348–354 (1979)

    Article  CAS  Google Scholar 

  23. Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 5. Dy(NO3)3, Ho(NO3)3, and Lu(NO3)3. J. Chem. Eng. Data 26, 391–395 (1981)

    Article  CAS  Google Scholar 

  24. Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 6. Eu(NO3)3, Y(NO3)3, and YCl3. J. Chem. Eng. Data 27, 454–461 (1982)

    Article  CAS  Google Scholar 

  25. Rard, J.A.: Osmotic and activity coefficients of aqueous La(NO3)3 and densities and apparent molal volumes of aqueous Eu(NO3)3 at 25 °C. J. Chem. Eng. Data 32, 92–98 (1987)

    Article  CAS  Google Scholar 

  26. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of aqueous NiCl2, Pr(NO3)3, and Lu(NO3)3 and solubility of NiCl2 at 25 °C. J. Chem. Eng. Data 32, 334–341 (1987)

    Article  CAS  Google Scholar 

  27. Wang, Z.-C., He, M., Wang, J., Li, J.-L.: Modeling of aqueous 3–1 rare earth electrolytes and their mixtures to very high concentrations. J. Solution Chem. 35, 1137–1156 (2006)

    Google Scholar 

  28. Clegg, S.L., Seifeld, J.H., Edney, E.O.: Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii-Stokes-Robinson approach. J. Aerosol Sci. 34, 667–690 (2003)

    Article  CAS  Google Scholar 

  29. Clegg, S.L., Seifeld, J.H.: Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)

    Article  CAS  Google Scholar 

  30. McKay, H.A.C., Perring, J.K.: Calculations of the activity coefficients of mixed aqueous electrolytes from vapour pressures. Trans. Faraday Soc. 49, 163–165 (1953)

    Article  CAS  Google Scholar 

  31. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, 3rd edn., Chap. 14, Reinhold, New York (1958)

    Google Scholar 

  32. Kumar, A.: Ionic interactions in aqueous mixtures of NaCl with guanidinium chloride: osmotic coefficients, densities, speeds of sound, surface tensions, viscosities, and the derived properties. J. Phys. Chem. B 104, 9505–9512 (2000)

    Article  CAS  Google Scholar 

  33. Kumar, A.: The mixing of K+, (n-Bu4)N+, Mg2+, and Ca2+ with guanidinium cation in water: ionic interactions from a thermodynamic study. J. Phys. Chem. B 105, 9828–9833 (2001)

    Article  CAS  Google Scholar 

  34. Kumar, A.: Ionic interactions from the mixing of NaCl with the acetate, nitrate, perchlorate, and sulfate salts of guanidinium in water. J. Phys. Chem. B 107, 2808–2814 (2003)

    Article  CAS  Google Scholar 

  35. Archer, D.G.: Thermodynamic properties of the NaCl + H2O system II. Thermodynamic properties of NaCl(aq), NaCl.2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  36. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0 — 10.77 mol.kg,1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)

    Article  CAS  Google Scholar 

  37. Wang, Z.-C., Yu, H.-L., Hu, Y.-F.: Isopiestic studies on [mannitol + sorbitol + sucrose](aq) at the temperature 298.15 K. Comparison with the partial ideal solution model. J. Chem. Thermodyn. 26, 171–176 (1994)

    Article  CAS  Google Scholar 

  38. Hu, Y.-F., Wang, Z.-C.: Isopiestic studies on [NaCl(mB) + NH4Cl(mC) + BaCl2(mD)](aq) at the temperature 298.15 K. A quaternary system obeying Zdanovskii's rule. J. Chem. Thermodyn. 26, 429–433 (1994)

    Article  CAS  Google Scholar 

  39. Hu, Y.-F., Wang, Z.-C.: Isopiestic studies on [mannitol + sorbitol + d-glucose](aq) and the subsystems at the temperature 298.15 K. J. Chem. Thermodyn. 29, 879–884 (1997)

    Article  CAS  Google Scholar 

  40. Wang, M., Zhang, H., Wang, Z.-C.: Isopiestic studies on the saturated quinary systems (water + sodium chloride(sat) + glycine(sat) + sorbitol + sucrose) and (water + sodium chloride(sat) + barium chloride(sat) + sorbitol + sucrose) at the temperature 298.15 K: comparison with the ideal-like solution model. J. Chem. Thermodyn. 33, 711–717 (2001)

    Article  CAS  Google Scholar 

  41. Wang, J., Wang, Z.-C.: An ideal-like quinary aqueous solution equilibrated with a solid cadmium-containing complex. Z. Phys. Chem. 218, 881–885 (2004)

    CAS  Google Scholar 

  42. Wang, J., Wang, Z.-C., Li, J.-L., Yang, D.-M., Gong, L.-D.: Isopiestic study of water + mannitol(sat) + sodium chloride + ammonium chloride + barium chloride at T = 298.15 K and comparison with the ideal-like solution model. J. Solution Chem. 34, 369–373 (2005)

    Article  CAS  Google Scholar 

  43. Rard, J.A., Platford, R.F.: In Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 5, K.S. Pitzer ed., CRC Press, Boca Raton, FL (1991)

    Google Scholar 

  44. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of sodium chloride and strontium chloride at 25 °C. J. Chem. Eng. Data 27, 342–346 (1982)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Chang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, M., Wang, ZC. Interactions in the Quaternary Systems H 2 OY(NO 3 ) 3 La(NO 3 ) 3 Pr(NO 3 ) 3 , H 2 OY(NO 3 ) 3 La(NO 3 ) 3 Nd(NO 3 ) 3 and H 2 OY(NO 3 ) 3 Pr(NO 3 ) 3 Nd(NO 3 ) 3 to Very High Concentrations. J Solution Chem 35, 1607–1619 (2006). https://doi.org/10.1007/s10953-006-9090-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9090-5

Key Words

Navigation