Abstract
Isopiestic measurements have been carried out for the quaternary systems H2O−Y(NO3)3−La(NO3)3−Pr(NO3)3, H2O−Y(NO3)3−La(NO3)3−Nd(NO3)3 and H2O−Y(NO3)3−Pr(NO3)3−Nd(NO3)3 at 298.15 K to near saturation. The measurements can be represented by a modified Pitzer ion–interaction model extending to C (3) within the experimental uncertainty over the full concentration range. In addition, these systems obey the Zdanovskii-Stokes-Robinson model or partial ideal solution model within isopiestic accuracy, indicating zero solute-solute interchange energy, which is consistent with the nature of salts of the trivalent rare earth ions.
Similar content being viewed by others
References
Zdanovskii, A.B.: Regularities in the property variations of mixed solutions, Tr. Solyanoi Lab. Akad. Nauk SSSR, No. 6, 5–70 (1936)
Stokes, R.H., Robinson, R.A.: Interactions in aqueous nonelectrolyte solutions. I. Solute—solvent equilibria. J. Phys. Chem. 70, 2126–2131 (1966)
Chen, H., Sangster, J., Teng, T.T., Lenzi, F.: A general method of predicting the water activity of ternary aqueous solutions from binary data. Can. J. Chem. Eng. 51, 234–241 (1973)
Wang, Z.-C.: The linear concentration rules at constant partial molar quantity Ψ 0—extension of Turkdogan's rule and Zdanovskii's rule. Acta Metall. Sinica 16, 195–206 (1980)
Wang, Z.-C.: Thermodynamics of multicomponent systems at constant partial molar quantity Ψ 0— Thermodynamical aspect of iso-Ψ 0 rules of Zdanovskii-type and Turkdogan-type. Acta Metall. Sinica 17, 168–176 (1981)
Wang, Z.-C.: The Theory of Partial Simple Solutions for Multicomponent Systems, in First China-USA Bilateral Metallurgical Conference, p 121–136, The Metall. Ind. Press, Beijing (1981)
Wang, Z.-C.: The theory of partial simple solutions for multicomponent systems. Acta Metall. Sinica 18, 141–152 (1982)
Wang, Z.-C., Zhang, X.-H., He, Y.-Z., Bao, Y.-H.: High-temperature isopiestic studies on (1 , y)Hg + y(1 , t)Bi + ytSn(1) at 600 K. Comparison with the partial ideal solution model. J. Chem. Thermodyn. 21, 653–665 (1989)
Wang, Z.-C., Lück, R., Predel, B.: Pure component A + classically ideal solution (B + C + ⋯) = ?. J. Chem. Soc. Faraday Trans. 86, 3641–3646 (1990)
Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)
Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)
Pitzer, K.S.: In Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 3, K.S. Pitzer, ed., CRC Press, Boca Raton, FL (1991)
Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. V. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)
Archer, D.G.: Thermodynamic properties of the NaBr + H2O system. J. Phys. Chem. Ref. Data 20, 509–555 (1991)
Pitzer, K.S., Wang, P., Rard, J.A., Clegg, S.L.: Thermodynamics of electrolytes. 13. Ionic strength dependence of higher-order terms; Equations for CaCl2 and MgCl2. J. Solution Chem. 28, 265–282 (1999)
Rard, J.A., Wijesinghe, A.M.: Conversion of parameters between different variants of Pitzer's ion-interaction model, both with and without ionic strength dependent higher-order terms. J. Chem. Thermodyn. 35, 439–473 (2003)
Filippov, V.K., Charykov, N.A., Rumyantsev, V.: Extension of the Pitzer method to aqueous salt systems with solution phase complexing. Dokl. Akad. Nauk. SSSR Fiz. Khim. 296, 665–668 (1987)
Anstiss, R.G., Pitzer, K.S.: Thermodynamics of very concentrated aqueous electrolytes: LiCl, ZnCl2, and ZnCl2NaCl at 25 °C. J. Solution Chem. 20, 849–858 (1991)
Spedding, F.H., Weber, H.O., Saeger, V.W., Petheram, H.H., Rard, J.A., Habenschuss, A.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 1. The rare earth chlorides. J. Chem. Eng. Data 21, 341–360 (1976)
Rard, J.A., Weber, H.O., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 1. The rare earth perchlorates. J. Chem. Eng. Data 22, 187–201 (1977)
Rard, J.A., Shiers, L.E., Heiser, D.J., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 3. The rare earth nitrates. J. Chem. Eng. Data 22, 337–347 (1977)
Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. La(NO3)3, Pr(NO3)3, and Nd(NO3)3. J. Chem. Eng. Data 24, 348–354 (1979)
Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 5. Dy(NO3)3, Ho(NO3)3, and Lu(NO3)3. J. Chem. Eng. Data 26, 391–395 (1981)
Rard, J.A., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 6. Eu(NO3)3, Y(NO3)3, and YCl3. J. Chem. Eng. Data 27, 454–461 (1982)
Rard, J.A.: Osmotic and activity coefficients of aqueous La(NO3)3 and densities and apparent molal volumes of aqueous Eu(NO3)3 at 25 °C. J. Chem. Eng. Data 32, 92–98 (1987)
Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of aqueous NiCl2, Pr(NO3)3, and Lu(NO3)3 and solubility of NiCl2 at 25 °C. J. Chem. Eng. Data 32, 334–341 (1987)
Wang, Z.-C., He, M., Wang, J., Li, J.-L.: Modeling of aqueous 3–1 rare earth electrolytes and their mixtures to very high concentrations. J. Solution Chem. 35, 1137–1156 (2006)
Clegg, S.L., Seifeld, J.H., Edney, E.O.: Thermodynamic modelling of aqueous aerosols containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii-Stokes-Robinson approach. J. Aerosol Sci. 34, 667–690 (2003)
Clegg, S.L., Seifeld, J.H.: Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)
McKay, H.A.C., Perring, J.K.: Calculations of the activity coefficients of mixed aqueous electrolytes from vapour pressures. Trans. Faraday Soc. 49, 163–165 (1953)
Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, 3rd edn., Chap. 14, Reinhold, New York (1958)
Kumar, A.: Ionic interactions in aqueous mixtures of NaCl with guanidinium chloride: osmotic coefficients, densities, speeds of sound, surface tensions, viscosities, and the derived properties. J. Phys. Chem. B 104, 9505–9512 (2000)
Kumar, A.: The mixing of K+, (n-Bu4)N+, Mg2+, and Ca2+ with guanidinium cation in water: ionic interactions from a thermodynamic study. J. Phys. Chem. B 105, 9828–9833 (2001)
Kumar, A.: Ionic interactions from the mixing of NaCl with the acetate, nitrate, perchlorate, and sulfate salts of guanidinium in water. J. Phys. Chem. B 107, 2808–2814 (2003)
Archer, D.G.: Thermodynamic properties of the NaCl + H2O system II. Thermodynamic properties of NaCl(aq), NaCl.2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)
Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0 — 10.77 mol.kg,1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data 42, 819–849 (1997)
Wang, Z.-C., Yu, H.-L., Hu, Y.-F.: Isopiestic studies on [mannitol + sorbitol + sucrose](aq) at the temperature 298.15 K. Comparison with the partial ideal solution model. J. Chem. Thermodyn. 26, 171–176 (1994)
Hu, Y.-F., Wang, Z.-C.: Isopiestic studies on [NaCl(mB) + NH4Cl(mC) + BaCl2(mD)](aq) at the temperature 298.15 K. A quaternary system obeying Zdanovskii's rule. J. Chem. Thermodyn. 26, 429–433 (1994)
Hu, Y.-F., Wang, Z.-C.: Isopiestic studies on [mannitol + sorbitol + d-glucose](aq) and the subsystems at the temperature 298.15 K. J. Chem. Thermodyn. 29, 879–884 (1997)
Wang, M., Zhang, H., Wang, Z.-C.: Isopiestic studies on the saturated quinary systems (water + sodium chloride(sat) + glycine(sat) + sorbitol + sucrose) and (water + sodium chloride(sat) + barium chloride(sat) + sorbitol + sucrose) at the temperature 298.15 K: comparison with the ideal-like solution model. J. Chem. Thermodyn. 33, 711–717 (2001)
Wang, J., Wang, Z.-C.: An ideal-like quinary aqueous solution equilibrated with a solid cadmium-containing complex. Z. Phys. Chem. 218, 881–885 (2004)
Wang, J., Wang, Z.-C., Li, J.-L., Yang, D.-M., Gong, L.-D.: Isopiestic study of water + mannitol(sat) + sodium chloride + ammonium chloride + barium chloride at T = 298.15 K and comparison with the ideal-like solution model. J. Solution Chem. 34, 369–373 (2005)
Rard, J.A., Platford, R.F.: In Activity Coefficients in Electrolyte Solutions, 2nd edn., Chap. 5, K.S. Pitzer ed., CRC Press, Boca Raton, FL (1991)
Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous mixtures of sodium chloride and strontium chloride at 25 °C. J. Chem. Eng. Data 27, 342–346 (1982)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
He, M., Wang, ZC. Interactions in the Quaternary Systems H 2 O−Y(NO 3 ) 3 −La(NO 3 ) 3 −Pr(NO 3 ) 3 , H 2 O−Y(NO 3 ) 3 −La(NO 3 ) 3 −Nd(NO 3 ) 3 and H 2 O−Y(NO 3 ) 3 −Pr(NO 3 ) 3 −Nd(NO 3 ) 3 to Very High Concentrations. J Solution Chem 35, 1607–1619 (2006). https://doi.org/10.1007/s10953-006-9090-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-006-9090-5