Journal of Solution Chemistry

, Volume 35, Issue 12, pp 1621–1630 | Cite as

The Thermal Diffusion of Hydrogen Chloride in Water–Monoatomic Alcohol Mixtures at 298 K

  • V. N. Sokolov
  • L. P. Safonova
  • A. A. Pribochenko
Original Paper


Standard entropies of the thermal diffusion transference of HCl, entropies of the moving H+ and Cl ions, and Soret coefficients of this electrolyte at 298 K were obtained from a thermoelectrochemical investigation of HCl in water + alcohol solvent systems. The thermoelectric powers of the silver/silver chloride and para-benzoquinone/hydroquinone thermocells have been measured. Effects of the mixed solvent composition and the nature of an alcohol on the thermal diffusion characteristics were discussed using the theories of De Bethune and Agar.


Thermoelectrochemical systems Soret coefficients Thermal diffusion HCl Water + alcohol mixture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kirkwood, J.G.: In Ion Transport across Membranes, H.T. Clarke and D. Nachmansohn, Eds., Academic Press, New York (1954), pp. 119–127.Google Scholar
  2. 2.
    Holtan, H., Jr.: Electric Potentials in Thermocouples and Thermocells, Thesis, Utrecht, 1953.Google Scholar
  3. 3.
    Lin, J., De Haven, J.J.: The transport entropy of hydrogen ion in the water–ethanol system. I. The initial thermoelectric powers of the hydrogen ion thermocell, and the cation transport number of HCl in the water–ethanol system. J. Electrochem. Soc. 116, 805–809 (1969).Google Scholar
  4. 4.
    Lin, J.: The transport entropy of hydrogen ion in the water–ethanol system. II. The heats of transport of HCl and the transported entropy of H+. J. Electrochem. Soc. 116, 1708–1712 (1969).Google Scholar
  5. 5.
    Holtan, H., Eliassen, S.: Initial thermoelectric powers of the quinhydrone electrode in ethanol–water and acetonitrile–water mixtures. Acta Chem. Scand. 27, 429–432 (1973).CrossRefGoogle Scholar
  6. 6.
    Sokolov, V.N., Kobenin, V.A., Usatchova I.V.: The standard entropy of transport of potassium chloride in the water–methanol system at 298 K. Phys. Chem. Chem. Phys. 1, 2985–2987 (1999).CrossRefGoogle Scholar
  7. 7.
    Lvov, S.N., Rakhmilevich, Y.D., Dibrov, I.A.: Termoelektricheskie issledovaniya vodnykh rastvorov elektrolitov. IV. Ustanovka dlya eksperimentalnykh issledovaniy pri 273–373 K. (Thermoelectric studies of electrolyte aqueous solutions. IV. Installation for 273–373 K experimental studies). Zhur. Fiz. Khim. 60, 2896–2899 (1986).Google Scholar
  8. 8.
    Bates, R.G.: in Determination of pH, John Wiley, New York (1964), pp. 241 and 282.Google Scholar
  9. 9.
    Breck, W.G., Cadenhead, G., Hammerli, M.: Thermoelectric powers and entropies of the hydrogen ion. Trans. Faraday Soc. 61, 37–49 (1965).CrossRefGoogle Scholar
  10. 10.
    Gordon, A.R., Ford, R.A.: The Chemist’s Companion. A Handbook of Practical Data, Techniques and References, Wiley-Interscience Publication, New York (1972).Google Scholar
  11. 11.
    Dibrov, I.A., Lvov, S.N., Rakhmilevich, Y.D.: Termoelektricheskie issledovaniya vodnykh rastvorov elektrolitov. I. Entropiya dvizhuschegosya iona. (Thermoelectric studies of electrolyte aqueous solutions. I. Entropy of a moving ion). Zhur. Fiz. Khim. 58, 1647–1650 (1984).Google Scholar
  12. 12.
    Kobenin, V.A., Usatchova, I.V., Sokolov, V.N.: Standartnye entropiynye kharakteristiki ionov v vodno-metanolnykh rastvorakh khloridov litiya, kaliya i tseziya. (Standard entropy characteristics of ions in lithium, potassium and caesium chloride water–methanol solutions). Zhur. Fiz. Khim. 74, 393–396 (2000).Google Scholar
  13. 13.
    Kobenin, V.A., Sokolov, V.N., Usatchova, I.V.: Termoelektrokhimicheskoe opredelenie standartnykh entropiynykh kharakteristik iona vodoroda v vodno-metanolnykh rastvorakh (Thermoelectrochemical study of standard entropy characteristics of hydrogen ion in water–methanol solutions). Elektrokhim. 36, 1070–1074 (2000).Google Scholar
  14. 14.
    Lin, J.-I.: The standard transported entropy of chloride ion in H2O and D2O. J. Solution Chem. 8, 125–133 (1979).CrossRefGoogle Scholar
  15. 15.
    Glushko, V.P.: Thermal Constants of Substances, Acad. Sci. USSR (1972).Google Scholar
  16. 16.
    Temkin, M.I., Khoroshin, A.V.: K teorii termoelektricheskikh yavleniy v rastvorakh elektrolitov (On the theory of thermoelectric phenomena in electrolyte solutions). Zhur. Fiz. Khim. 26, 500–508 (1952).Google Scholar
  17. 17.
    Sokolov, V.N.: Chisla perenosa ionov v vodno-organicheskikh rastvorakh khlorida vodoroda pri 298.15 K (Transport numbers of ions in hydrogen chloride water–organic solutions at 298.15 K). Izv. Vuz. Khim. Khim. Tekhnol. 48(2), 100–102 (2005).Google Scholar
  18. 18.
    Abdel-Hamid, A.A., Ragaii, M.F., Slim, I.Z.: Studies on proton conductance in mixed solvents. Part III. Z. Phys. Chem. (Leipzig) 254, 1–16, (1973).Google Scholar
  19. 19.
    De Bethune, A.J.: Irreversible thermodynamics in electrochemistry. J. Electrochem. Soc. 107, 829–842 (1960).Google Scholar
  20. 20.
    Agar, J.N., Mou, C.-Y., Lin, J.-I.: Single-ion heats of transport in electrolyte solutions: A hydrodynamic theory. J. Phys. Chem. 93, 2079–2082 (1989).CrossRefGoogle Scholar
  21. 21.
    Rakhmilevich, Y.D., Dibrov, I.A., Lvov, S.N.: Termoelektricheskie issledovaniya vodnykh rastvorov elektrolitov. Vliyanie temperatury na entropiyu perenosa elektrolita i entropiyu dvizhuschegosya iona v rastvore (Thermoelectric studies of electrolyte aqueous solutions. Temperature effect on electrolyte transport entropy and entropy of an ion moving in solution). Zhur. Fiz. Khim. 61, 2391–2396 (1987).Google Scholar
  22. 22.
    Franks, F., Ives, D.J.G.: The structural properties of alcohol–water mixtures. Quart. Rev. 20 1–44, (1966).CrossRefGoogle Scholar
  23. 23.
    Agar, J.N.: Advances in Electrochemistry and Electrochemical Engineering, Interscience, New York (1963), 3, Chap. 2.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • V. N. Sokolov
    • 1
  • L. P. Safonova
    • 2
  • A. A. Pribochenko
    • 1
  1. 1.Ivanovo State University of Chemistry and TechnologyIvanovoRussia
  2. 2.Institute of Solution Chemistry of Russian Academy of SciencesIvanovoRussia

Personalised recommendations