Skip to main content
Log in

On the Molar Volumes and Viscosities of Electrolytes

  • Original Article
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The b V coefficient of the term linear with the concentration of the apparent molar volume ϕ V of electrolytes in water and several non-aqueous solvents is examined. Its relationship with the B η coefficient of the corresponding term in the relative viscosity of these electrolyte solutions is explored. Positive correlations are found in some cases as expected, but in others, where crowding of the solvation shells occurs on increasing concentration, such correlations fail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Redlich, O.: Molal volumes of solutes. IV. J. Phys. Chem. 44, 619–629 (1940); Redlich, O., Rosenfeld, P.: The theory of the molal volume of a dissolved electrolyte. II. Z. Elektrochem. 37, 705–711 (1931).

    Google Scholar 

  2. Millero, F.J.: The molal volumes of electrolytes. Chem. Rev. 71, 147–176 (1971).

    Article  CAS  Google Scholar 

  3. Marcus, Y., Hefter, G.: On the pressure and electric field dependencies of the relative permittivity of liquids. J. Solution Chem. 28, 575–592 (1999).

    Article  CAS  Google Scholar 

  4. Conway, B.E., Verrall, R.E., Desnoyers, J.E.: Partial molal volumes of tetraalkyl-ammonium halides and assignment of individual ionic contributions. Trans. Faraday Soc. 62, 2738–2749 (1966).

    Article  CAS  Google Scholar 

  5. Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of alkali halides in water at 25. Influence of structural hydration on the concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969).

    Article  CAS  Google Scholar 

  6. Jenkins, H.D.B., Marcus, Y.: Viscosity B-coefficiets of ions in solution. Chem. Rev. 95, 2695–2724 (1995).

    Article  CAS  Google Scholar 

  7. Marcus, Y., Hefter, G.: Ion pairing, Chem. Rev., in press (2006).

  8. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolyte Solutions, Reinhold, New York, 3rd ed. (1958).

  9. Marcus, Y.: Electrostriction, ion solvation, and solvent release on ion pairing. J. Phys. Chem. B 109, 18541–18549 (2005).

    Article  CAS  Google Scholar 

  10. Novotny, P., Söhnel, O.: Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Eng. Data 33, 49–55 (1988).

    Article  CAS  Google Scholar 

  11. Marcus, Y.: The thermodynamics of solvation of ions. Part 5 The Gibbs free energy of hydration of ions at 298.15 K. J. Chem. Soc., Faraday Trans. 1, 87, 2995–2997 (1991).

    Google Scholar 

  12. Spedding, F.H., Saeger, V.W., Gray, K.A., Boneau, P.K., Brown, M.A., DeKock, C.W., Baker, J.L., Shiers, L.E., Weber, H.O., Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 C. I. Rare earth chlorides. J. Chem. Eng. Data 20, 72–77 (1975); Spedding, F.H., Shiers, L.E., Brown, M.A., Baker, J.L., Gutierrez, L., McDowell, L.S, Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 C. III. Rare earth nitrates. J. Phys. Chem. 79, 1087–1092(1975); Spedding, F.H., Shiers, L.E., Brown, M.A., Derer, J.L. Swanson, D.L, Habenschuss, A.: Densities and apparent molal volumes of some aqueous rare earth solutions at 25 C. II. Rare earth perchlorates. J. Chem. Eng. Data 20, 81–86 (1975).

  13. Ernst, S., Manikowski, R.: Measurement of the speed of sound and density of aqueous solutions of first-row transition metal halides. 1. Apparent and molar compressibilities and volumes of aqueous CoCl2 and CoBr2 within the temperature range 291.15 to 297.15 K. J. Chem. Eng. Data 41, 397–401 (1996); Ernst, S., Manikowski, R.: Measurement of the speed of sound and density of aqueous solutions of first-row transition metal halides. 2. Apparent and molar compressibilities and volumes of aqueous NiCl2 and NiBr2 within the temperature range 291.15 to 297.15 K. J. Chem. Eng. Data 42, 647–650 (1997); Ernst, S., Gepert, M., Manikowski, R.: Apparent molar compressibilities of aqueous solutions of Cu(NO3)2, CuSO4, and CuCl2 from 288.15 to 313.15 K. J. Chem. Eng. Data 44, 1199–1203 (1999); Ernst, S., Gepert, M., Manikowski, R.: Measurement of the speed of sound and density of aqueous solutions of first-row transition metal halides. 3. Apparent and molar compressibilities and volumes of aqueous CoI2 and NiI2 within the temperature range 291.15 to 297.15 K. J. Chem. Eng. Data 45, 1064–1068 (2000).

  14. Pogue, R.F., Atkinson, G.: Solution thermodynamics of first-row transition elements. 1. Apparent molal volumes of aqueous NiCl2, Ni(ClO4)2, CuCl2, and Cu(ClO4)2 from 15 to 55 C. J. Chem. Eng. Data 33, 370–376 (1988); Pogue, R.F., Atkinson, G.: Solution thermodynamics of first-row transition elements. 2. Apparent molal volumes of aqueous MnCl2, FeCl2, and Fe(ClO4)2 from 15 to 55 C. J. Chem. Eng. Data 34, 227–232 (1989); Pogue, R.F., Atkinson, G.: Solution thermodynamics of first-row transition elements. 2. Apparent molal volumes of aqueous zinc chloride and zinc perchlorate from 15 to 55 C and an examination of solute-solute and solute-solvent interactions. J. Solution Chem. 18, 249–264 (1989); Puchalska, D., Atkinson, G.: Densities and apparent molal volumes of aqueous BaCl2 solutions from 15 to 140 C and from 1 to 200 bar. J. Chem. Eng. Data 36, 449–452 (1991).

  15. Zhang, H.-L., Chen, G.-H., Han, Sh.-J.: Viscosity and density of H2O + NaCl + CaCl2 and H2O + KCl + CaCl2 at 298.15 K. J. Chem. Eng. Data 42, 526–530 (1997).

    Article  CAS  Google Scholar 

  16. Pilar Peña, M., Vercher, E., Martinez-Andreu, A.: Apparent molar volumes of strontium chloride in ethanol + water at 298.15 K. J. Chem. Eng. Data 42, 187–189 (1997).

    Article  Google Scholar 

  17. Pasztor, A.J., Criss, C.M.: Apparent molal volumes and heat capacities of some 1:1 electrolytes in anhydrous methanol at 25 C. J. Solution Chem. 7, 27–44 (1978).

    Article  CAS  Google Scholar 

  18. Vosburgh, W.C., Connell, L.C., Butler, J.A.V.: The electrostriction produced by salts in some aliphatic alcohols. J. Chem. Soc. 1933, 933–942.

  19. Kawaizumi, F., Zana, R.: Partial molal volumes of ions in organic solvents from ultrasonic vibration potential and density measurements. 1. methanol. J. Phys. Chem. 78, 627–631 (1974).

    Article  CAS  Google Scholar 

  20. Mcinnes, D.A., Dayhoff, M.O.: The apparent and partial molal volumes of potassium iodide and of iodine in methanol at 25 from density measurements. J. Am. Chem. Soc. 75, 5219–5220 (1953).

    Article  Google Scholar 

  21. Kiepe, J., de Araujo Rodrigues, A. K., Horstmann, S., Gmehling, J.: Experimental determination and correlation of liquid density data of electrolyte mixtures containing water or methanol. Ind. Eng. Chem. Res. 42, 2022–2029 (2003).

    Article  CAS  Google Scholar 

  22. Skabichevskii, P. A.: Apparent molar volumes of lithium salts in methyl and isoamyl alcohols. Zh. Fiz. Khim. 46, 531–532 (1972); Russ. J. Phys. Chem. 46, 309–310 (1972).

  23. Padova, J., Abrahamer, I.: Ion-solvent interactions. VII. Apparent and partial molal volumes of some symmetrical tetraalkylammonium hakides in anhydrous methanol solutions. J. Phys. Chem. 71, 2112–2116 (1967).

    CAS  Google Scholar 

  24. Bottomley, G.A., Bremers, M.T.: Electrolyte molar volumes at 273–373 K in propylene carbonate, N-methylformamide, formamide, and methanol: their relation to solvent compressibility. Ion association constant in acetonitrile at 298 K. Aust. J. Chem. 39, 1959–1981 (1986).

    CAS  Google Scholar 

  25. Gopal, R., Srivastava, R.K.: Studies on solutions of high dielectric constant, Part II. Partial molal volume of some uni-univalent electrolytes in formamide. J. Indian Chem. Soc. 40, 99–104 (1963).

    Google Scholar 

  26. Chen, T., Hefter, G., Buchner, R., Senanayake, G.: Molar volumes and heat capacities of electrolytes and ions in nonaqueous solvents: 1. Formamide. J. Solution Chem. 27, 1067–1096 (1998).

    Article  CAS  Google Scholar 

  27. Dunn, L.A.: Apparent molar volumes of electrolytes. Part 4, KCl in formamide at 25 C. Trans. Faraday Soc. 67, 2525–2527 (1971).

    Article  CAS  Google Scholar 

  28. Seidel, W., Luhofer, G.: Apparent molar volumes of some 1,1-electrolytes in N,N-dimethylformamide, propylene carbonate and water. Z. Phys. Chem. (NF) 148, 221–230 (1986).

    CAS  Google Scholar 

  29. Zana, R., Desnoyers, J.E., Perron, G., Kay, R.L., Lee, K.: Ionic volumes of electrolytes in propylene carbonate from densities, ultrasonic vibration potentials, and transference numbers at 25 C. J. Phys. Chem. 86, 3996–4003 (1982).

    Article  CAS  Google Scholar 

  30. Muhuri, P.K, Hazra, D.K.: Viscosity B coefficients of some tetraalkylammonium bromides, lithium tetrafluoroborate and tetrabutylammonium tetraphenyl borate in propylene carbonate. Z. Naturforsch., 48a, 523–528 (1993).

    Google Scholar 

  31. Chauhan, M.S., Sharma, O.P., Kumar, A., Sharma, K.C., Chauhan, S.: Viscosity study of ion solvation in DMSO-DMF and DMSO-MeOH solvent systems at 25 C. J. Electrochem. Soc. India 47, 187–191 (1998).

    CAS  Google Scholar 

  32. Zana, R., Perron, G., Desnoyers, J.E.: Ultrasonc vibration potentials apparent molal volumes, and apparent molal heat capacities of 1:1 electrolytes in acetonitrile. J. Solution Chem. 8, 729–753 (1979).

    Article  CAS  Google Scholar 

  33. Wang, J., Zhao, Y., Zhuo, K., Lin, R.: A partial-molar volume study of electrolytes in propylene carbonate-based lithium battery electrolyte solutions at 298.15 K. Can. J. Chem. 80, 753–760 (2002).

    Article  CAS  Google Scholar 

  34. Choi, Y.-S., Criss, C.M: Partial molal heat capacities and volumes of electrolytes in nonaqueous solvents and ion-solvent interactions. Disc. Faraday Soc. 64, 204–218 (1978).

    CAS  Google Scholar 

  35. Lankford, J.I., Criss, C.M.: Partial molar isentropic compressibilities and volumes of selected electrolytes and nonelectrolytes in dimethylsulfoxide. J. Solution Chem. 9, 753–765 (1987).

    Article  Google Scholar 

  36. Bicknell, R.T.M., Lawrence, K.G., Feakins, D.: Ionic viscosity B coefficients in dimethyl sulfphoxide at 25, 35 and 45 C. J. Chem. Soc., Faraday Trans. 1 76, 637–647 (1980).

    Article  CAS  Google Scholar 

  37. Palaiologou, M.M., Molinou, I.E., Tsierkezos, N.G.: Viscosity studies on lithium bromide in water + dimethyl sulfoxide mixtures at 278.15 K and 293.15 K. J. Chem. Eng. Data 47, 1285–1289 (2002).

    Article  CAS  Google Scholar 

  38. Bobicz, D., Grzybkowski, W.: Apparent molar volumes of multicharged cations in dimethylsulfoxide solutions at 25 C. J. Solution Chem. 31, 223–234 (2002).

    Article  CAS  Google Scholar 

  39. Krakowiak, K., Bobicz, D., Grzybkowski, W.: Limiting partial molar volumes of tetra-n-alkylammonium perchlorates in N,N-dimethylacetamide, triethylphosphate and dimethyl sulfoxide at T = 298.15 K. J. Chem. Thermodyn. 33, 121–133 (2001).

    Article  CAS  Google Scholar 

  40. Lawrence, K.G., Sacco, A.: Separation of viscosity B coefficients into ionic contributions. Part 1. Tetrabutylammonium tetrabutylborate and tetraphenyl-phosphonium tetraphenylborate in dimethylsulfoxide. J. Chem. Soc. Faraday Trans. 1 79, 615–624 (1983).

    Article  CAS  Google Scholar 

  41. Marcus, Y., Hefter, G.: Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. Chem. Rev. 104, 3405–3452 (2004).

    Article  CAS  Google Scholar 

  42. Marcus, Y., Jenkins, H.D.B., Glasser, L.: Ion volumes – a comparison. J. Chem. Soc., Dalton Trans. 2002, 3795–3798.

  43. Marcus, Y.: The solvation number of ions obtained from their entropies of solvation. J. Solution Chem. 15, 291–306 (1986).

    Article  CAS  Google Scholar 

  44. Patial, B.S., Chauhan, S., Chauhan, M.S., Syal, V.K.: A study of activation parameters for viscous flow process of some tetraalkylammonium salts in binary mixtures of N,N-dimethylformamide and ethyl methyl ketone. Indian J. Chem. A 41, 2039–2045 (2002).

    Google Scholar 

  45. Jauhar, S.P., Sandhu, S.: Conductance and viscosity measurements of some 1:1 electrolytes in dimethylformamide + methanol mixtures at 25, 30 and 40 C. Indian J. Chem. A 39, 392 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhak Marcus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, Y. On the Molar Volumes and Viscosities of Electrolytes. J Solution Chem 35, 1271–1286 (2006). https://doi.org/10.1007/s10953-006-9058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9058-5

KEY WORDS

Navigation