Abstract
The formation of the hydrolytic complexes of U(IV) has been investigated at 25.00°C by measuring the Emf of a cell containing inert metal sponge and glass electrodes, in 3 mol·dm−3 aqueous NaClO4 solutions containing both U(VI) and U(IV) at acidities ranging between 10−0.5 and 10−1.8 mol·dm−3. The lower limit of acidity is imposed by the precipitation of the sparingly soluble oxides of U(IV) whereas the upper limit has been chosen in order to avoid large corrections for the liquid junction potential. The experimental data have been treated using classical graphical methods (Rossotti, F.J.C., Rossotti, H.: The Determination of Stability Constants. McGraw Hill Book Company, Inc. New York (1961)) and by the computerized least-squares program LETAGROP-ETITR (Sillen, L.G., Warnqvist, B.: Arkiv för Kemi. 31, 315–39 (1969)). The results can be explained by assuming the formation of two mononuclear complexes, U(OH)3+ and \(\mathop {{\rm U(OH)}}\nolimits_4^0\). The obtained formation constants in the 3 mol·dm−3 NaClO4 ionic medium are: \({\rm log}_{10}^\ast\beta_{1}=-1.62\pm 0.02\) and \({\rm log}_{10}^\ast\beta_{4} = -7.70 \pm 0.04\). The formal standard potential * E 6,4 for the couple UO2 2 +/U4 + at the same conditions is 335.7± 0.5 mV.
Similar content being viewed by others
References
Baes, C.F., Jr., Mesmer, R.E.: The Hydrolysis of Cations, Wiley & Sons, New York (1976)
Wanner, H., Forrest, I. (eds.): Chemical thermodynamics of uranium. NEA-OECD North Holland Elsevier Science Publisher B. V. Amsterdam, The Netherlands (1992)
Mompean, F.J., et al. (eds.): Chemical thermodynamics 5-update on the chemical thermodynamics of uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier B. V. Amsterdam, The Netherlands (2003)
Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)
Guggenheim, E.A.: Application of Statistical Mechanics. Clarendon, Oxford (1966)
Biedermann, G.: Ionic media. In: Goldberg, E.D. (ed.) The Nature of Seawater, Dahlem Workshop Report, pp. 339–362. Berlin (1975)
Ciavatta, L.: The specific interaction theory in evaluating ionic equilibriums. Annali di Chimica (Rome, Italy) 70, 551–567 (1980)
Ciavatta, L.: The specific interaction theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Annali di Chimica (Rome, Italy) 80, 255–263 (1990)
Ciavatta, L., Ferri, D., Grenthe, I., Salvatore, F.: The first acidification step of the tris(carbonato) dioxouranate(VI) ion. UO2 (CO3)3 4−. Inorg. Chem. 20, 463–467 (1981)
Biedermann, G.: The hydrolysis of metal ions. XIV. The hydrolysis of the indium(III) ion. Arkiv för Kemi 9, 277–293 (1956)
Brown, A.S.: A type of silver chloride electrode suitable for use in dilute solutions. J. Am. Chem. Soc. 56, 646–647 (1934)
Biedermann, G., Sillen, L.S.: The hydrolysis of metal ions. IV. Liquid-junction potentials and constancy of activity factors in NaClO4-HClO4 ionic medium. Arkiv för Kemi 5, 425–540 (1953)
Gran, G.: Determination of the equivalence point in potentiometric titrations. II. Analyst 77, 661–671 (1952)
Rossotti, F.J.C., Rossotti, H.: The Determination of Stability Constants. McGraw Hill Book Company, Inc. New York (1961)
Sillen, L.G., Warnqvist, B.: High-speed computers as a supplement to graphical methods. VI. A strategy for two-level LETAGROP adjustment of common and “group” parameters. Features that avoid divergence. Arkiv för Kemi 31, 315–39 (1969)
Grenthe, I., Puigdomenech, I. (eds.): Modelling in Aquatic Chemistry. OECD-NEA, Paris (1997)
Rai, D., Felmy, A.R., Ryan, J.L.: Uranium(IV) hydrolysis constants and solubility product of UO2· xH2O(am). Inorg. Chem. 29, 260–264 (1990)
Berner, U.: Solubility calculations and their interpretation in PA. In: The Use of Thermodynamic Databases in Performance Assessments, Workshop Proceedings, pp. 139–150. Barcelona Spain, OECD Publications, Paris (2002)
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Manfredi, C., Caruso, V., Vasca, E. et al. On the Hydrolysis of the Tetravalent Uranium Ion U4+ . J Solution Chem 35, 927–937 (2006). https://doi.org/10.1007/s10953-006-9037-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-006-9037-x