Skip to main content
Log in

DFT Study of Solvent Effects for Some Organic Molecules Using a Polarizable Continuum Model

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Forty ionic molecules are studied by DFT (B3LYP, B3P86), MP4 with different basis sets using the PCM/UAHF model within the self-consistent reaction-field method to assess solvent effects. For these molecules, the solvation free energies (ΔG sol) in water and the dipole moments in vacuoas well as in water are obtained. By comparing the calculated values of ΔG sol with experimental values and molecular simulation results, it is found that the ΔG sol values generated by the DFT method are in better agreement with experimental values. Moreover, especially for the B3LYP/6-31+G level, the results of both ΔG sol and dipole moments are more accurate considering the lower computational cost. It can be noted that the dipole moments of solutes in water show some increase relative to those in vacuo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tolosa, S., Sansón, J.A., Hidalgo, A.: Molecular dynamics simulation of aqueous solutions using interaction energy components: application to the solvation gibbs energy. J. Solution Chem. 34, 407–414 (2005)

    Article  CAS  Google Scholar 

  2. Zamanakos, G.: A fast and accurate analytical method for the computation of solvent effects in molecular simulations. Ph.D. Dissertation, California Institute of Technology Pasadena, California (2002)

  3. Onsager, L.: Electric moments of molecules in liquids. J. Am. Chem. Soc. 58, 1486–1493 (1936)

    Article  CAS  Google Scholar 

  4. Rivail, L., Rinaldi, D.: Molecular polarizability and dielectric effect of medium in the liquid phase. Theoretical study of the water molecule and its dimers. Theor. Chim. Acta 32, 57–70 (1973)

    Article  Google Scholar 

  5. Tapia, O., Goscinski, O.: Self-consistent reaction field theory of solvent effects. Mol. Phys. 29, 1653–1661 (1975)

    Article  CAS  Google Scholar 

  6. Tomasi, J., Persico, M.: Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. Chem. Rev. 94, 2027–2094 (1994)

    Article  CAS  Google Scholar 

  7. Truong, T.N., Stefanovich, E.V.: A new method for incorporating solvent effect into the classical, ab initio molecular orbital and density functional theory frameworks for arbitrary shape cavity. Chem. Phys. Lett. 240, 253–260 (1995)

    Article  CAS  Google Scholar 

  8. Ruiz-López, M.F., Bohr, F., Martins-Costa, M.T.C., Rinaldi, D.: Studies of solvent effects using density functional theory. Co-operative interactions in H3N⃛HBr proton transfer. Chem. Phys. Lett. 221, 109–116 (1994)

    Article  Google Scholar 

  9. De Angelis, F., Sgamellotti, A., Cossi, M., Rega, N., Barone, V.: A plane wave implementation of the polarizable continuum model. Chem. Phys. Lett. 328, 302–309 (2000)

    Article  CAS  Google Scholar 

  10. Jeon, J., Kim, H.J.: A continuum reaction field theory of polarizable, nondipolar, quadrupolar solvents: Ab Initio study of equilibrium solvation in benzene. J. Solution Chem. 30, 849–860 (2001)

    Article  CAS  Google Scholar 

  11. Miertu, S., Scrocco, E., Tomasi, J.: Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981)

    Article  Google Scholar 

  12. Cossi, M., Barone, V., Cammi, R., Tomasi, J.: Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327–335 (1996)

    Article  CAS  Google Scholar 

  13. Mennucci, B., Cossi, M., Tomasi, J.: A theoretical model of solvation in continuum anisotropic dielectrics. J. Chem. Phys. 102, 6837–6845 (1985)

    Article  Google Scholar 

  14. Cossi, M., Mennucci, B., Tomasi, J.: Solute–solvent electrostatic interactions with non-homogeneous radial dielectric functions. Chem. Phys. Lett. 228, 165–170 (1994)

    Article  CAS  Google Scholar 

  15. Cammi, R., Tomasi, J.: Analytical derivatives for molecular Solutes. II. Hartree-Fock energy first and second derivatives with respect to nuclear coordinates. J. Chem. Phys. 101, 3888–3897 (1994)

    Article  CAS  Google Scholar 

  16. Cammi, R., Cossi, M., Mennucci, B., Tomasi, J.: Solvent effects on static and dynamic polarizability and hyperpolarizabilities of acetonitrile. J. Mol. Struct. 436, 567–575 (1997)

    Article  Google Scholar 

  17. Cammi, R., Frediani, L., Mennucci, B., Tomasi, J.: Calculation of nonlinear optical susceptibilities of pure liquids within the polarizable continuum model: the effect of the macroscopic nonlinear polarization at the output frequency. J. Mol. Struct. (Theochem.) 633, 209–216 (2003)

    Article  CAS  Google Scholar 

  18. Tñón, I., Ruiz-Lopez, M.F., Rinaldi, D., Bertr´n, J.: Computation of hydration free energies using a parameterized continuum model: study of equilibrium geometries and reactive processes in water solution. J. Comput. Chem. 17, 148–155 (1996)

    Article  Google Scholar 

  19. Wong, M.W., Wiberg, K.B., Frisch, M.J.: Solvent Effects. 2. Medium effect on the structure, energy, charge density, and vibrational frequencies of sulfamic acid. J. Am. Chem. Soc. 114, 523–529 (1992)

    Article  CAS  Google Scholar 

  20. Mikkelsen, K.V., Cesar, A., Agren, H., Jensen, H.J.A.: Multiconfigurational self-consistent reaction field theory for nonequilibrium solvation. J. Chem. Phys. 103, 9010–9023 (1995)

    Article  CAS  Google Scholar 

  21. Wong, M.W., Frisch, M.J., Wiberg, K.B.: Solvent Effects. 1. The mediation of electrostatic effects by solvents. J. Am. Chem. Soc. 113, 4776–4791 (1991)

    Article  CAS  Google Scholar 

  22. Aleman, C., Galembeck, S.E.: Solvation of chromone using combined discreterSCRF models. Chem. Phys. 232, 151–159 (1998)

    Article  CAS  Google Scholar 

  23. Jezierska, A., Panek, J., Ryng, S.: DFT study of a novel lead structure in the isoxazole heterocyclic system. J. Mol. Struct. (Theochem.) 636, 203–214 (2003)

    Article  CAS  Google Scholar 

  24. Fortunelli, A., Tomasi, J.: The implementation of density functional theory within the polarizable continuum model for solvation. Chem. Phys. Lett. 231, 34–39 (1994)

    Article  CAS  Google Scholar 

  25. Hall, R.J., Davidson, M.M., Burton, N.A., Hillier, I.H.: Combined density functional, self-consistent reaction field model of solvation. J. Phys. Chem. 99, 921–924 (1995)

    Article  CAS  Google Scholar 

  26. Namazian, M.: Density functional theory response to the calculation of electrode potentials of quinines in non-aqueous solution of acetonitrile. J. Mol. Struct. (Theochem.) 664, 273–278 (2003)

    Article  CAS  Google Scholar 

  27. Pascual-Ahuir, J.L., Silla, E., Tuñón, I., GFPOL: An improved description of molecular surface. III. A new algorithm for the computation of a solvent-excluding surface. J. Comput. Chem. 15, 1127–1138 (1994)

    Article  CAS  Google Scholar 

  28. Cossi, M., Mennucci, B., Cammi, R.: Analytical first derivatives of molecular surfaces with respect to nuclear coordinates. J. Comput. Chem. 17, 57–73 (1996)

    Article  CAS  Google Scholar 

  29. Floris, F.M., Tomasi, J., Pascual-Ahuir, J.L.: Dispersion and repulsion contribution to the solvation energy: refinements to a simple computational model in the continuum approximation. J. Comput. Chem. 12, 784–791 (1991)

    Article  CAS  Google Scholar 

  30. Caillet, J., Claverie, P.: On the conformational varieties of acetylcholine in the crystals of its halides. Acta Crystallogr. B 34, 3266–3272 (1978)

    Google Scholar 

  31. Pierotti, R.A.: A scaled particle theory of aqueous and nonaqueous solutions. Chem. Rev. 76, 717–726 (1976)

    Article  CAS  Google Scholar 

  32. Becke, A.D.: Density-functional Thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  33. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  Google Scholar 

  34. Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992)

    Article  Google Scholar 

  35. Barone, V., Cossi, M., Tomasi, J.: A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 107, 3210–3221 (1997)

    Article  CAS  Google Scholar 

  36. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A. Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S., Pople, J.A.: Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh PA (1998)

    Google Scholar 

  37. Wang, J., Wang, W., Huo, S., Lee, M., Kollman, P.: Solvation model based on weighed solvent accessible surface area. J. Phys. Chem. B. 105, 5055–5067 (2001)

    Article  CAS  Google Scholar 

  38. Lide, D.R.: Handbook of Chemistry and Physics, 72th edn. CRC Press, Boca Raton (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlu Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Cheng, X., Yang, X. et al. DFT Study of Solvent Effects for Some Organic Molecules Using a Polarizable Continuum Model. J Solution Chem 35, 869–878 (2006). https://doi.org/10.1007/s10953-006-9034-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9034-0

Keywords

Navigation