Skip to main content
Log in

Effect of Ammonium Salts on the Volumetric and Viscometric Behavior of D(+)-Glucose, D(−)-Fructose and Sucrose in Aqueous Solutions at 25°C

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar volumes, V φ, and viscosity, η, of D(+)-glucose, D(−)-fructose and sucrose in water and in 0.02, 0.05, 0.5, 1.0 and 2.0 mol·kg−1 aqueous solutions of ammonium bromide, tetraethylammonium bromide and tetra-n-butylammonium bromide have been determined at 25 °C from density and efflux time measurements by using a vibrating-tube digital densimeter and a capillary viscometer, respectively. Partial molar volumes, \(\mathop V\nolimits_{2,m}^o\), at infinite dilution that were extrapolated from the V φ data were used to obtain the corresponding transfer volumes, \(\Delta_{{\rm tr}} \mathop V\nolimits_{2,m}^o\), for saccharides from water to different aqueous solutions of co-solutes. The Jones-Dole equation viscosity B-coefficients were obtained from the viscosity data. Positive values of \(\Delta_{{\rm tr}} \mathop V\nolimits_{2,m}^o\) were obtained for the saccharides in the presence of ammonium bromide, whereas both positive and negative \(\Delta_{{\rm tr}} \mathop V\nolimits_{2,m}^o\) values were obtained in the presence of tetraethylammonium and tetra-n-butylammonium bromides. The negative \(\Delta_{{\rm tr}} \mathop V\nolimits_{2,m}^o\) values at very low concentrations have small magnitudes. Volumetric interaction coefficients have been calculated by using the McMillan-Mayer theory and Gibbs energies of activation of viscous flow have been calculated by using Feakin’s transition-state theory equation. The parameters obtained from the volumetric and viscometric studies were used to understand various mixing effects due to the interactions between saccharides and ammonium salts in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ernst, B., Hart, G.W., Sinay, P.: Carbohydrates in Chemistry and Biology. Wiley-VCH Verlag, Weinheim, Vol. 1 Chap. 23 (2000).

    Google Scholar 

  2. Angyal, S.J., Craig, D.C.: Complex formation between polyols and rare earth cations. The crystal structure of galactitol. 2PrCl3-14H2O. Carbohydr. Res. 241, 1–8 (1993).

    Article  CAS  Google Scholar 

  3. Rao, C.P., Das, T.M.: Saccharide complexes of lanthanides. Indian J. Chem. 42A, 227–239 (2003).

    CAS  Google Scholar 

  4. Jockusch, R.A., Talbot, F.O., Simons, J.P.: Sugars in the gas phase. Part 2: The spectroscopy and structure of jet-cooled phenyl β-D-galactopyranoside. Phys. Chem. Chem. Phys. 5, 1502–1507 (2003).

    Article  CAS  Google Scholar 

  5. Galema, S.A., Howard, E., Engberts, J.B.F.N., Grigera, J.R.: The effect of stereochemistry upon carbohydrate hydration. A molecular dynamics simulation of β-D-galactopyranose and (α, β)-D-talopyranose. Carbohydr. Res. 265, 215–225 (1994).

    Article  CAS  Google Scholar 

  6. Liu, Q., Schmidt, R.K., Teo, B., Karplus, P.A., Brady, J.W.: Molecular dynamics studies of the hydration of α, α-trehalose. J. Am. Chem. Soc. 119, 7851–7862 (1997).

    Article  CAS  Google Scholar 

  7. Goldberg, R.B., Tewari, Y.B., Ahluwalia, J.C.: Thermodynamics of the hydrolysis of sucrose. J. Biol. Chem. 264, 9901–9904 (1989).

    CAS  Google Scholar 

  8. Green, J.L., Angell, C.A.: Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93, 2880–2882 (1989).

    Article  CAS  Google Scholar 

  9. Comesana, J.F., Otero, J.J., Garcia, E., Correa, A.: Densities and viscosities of ternary systems of water + glucose + sodium chloride at several temperatures. J. Chem. Eng. Data 48, 362–366 (2003).

    Article  CAS  Google Scholar 

  10. (a) Banipal, P.K., Banipal, T.S., Ahluwalia, J.C., Lark, B.S.: Partial molar heat capacities and volumes of transfer of some saccharides from water to aqueous sodium chloride solutions at T = 298.15K. J. Chem. Thermodyn 34, 1825–1846 (2002); (b) Banipal, T.S., Sharma, S., Lark, B.S., Banipal, P.K.: Thermodynamic and transport properties of sorbitol and mannitol in water and in mixed aqueous solutions. Indian J. Chem. 38A, 1106–1115 (1999); (c) Banipal, P.K., Kaur, G., Banipal, T.S.: Partial molar volumes of transfer of some saccharides from water to aqueous cupric chloride and zinc chloride solutions at 298.15,K. Indian J. Chem. 43A, 35–40 (2004); (d) Banipal, T.S., Singh, K., Banipal, P.K.: Volumetric properties of transfer of d(+)-glucose and sucrose from water to mixed aqueous solutions at 298.15,K. Indian J. Chem. 43A, 2549–2554 (2004); (e) Banipal, P.K., Banipal, T.S., Lark, B.S., Ahluwalia, J.C.: Partial molar heat capacities and volumes of some mono-, di- and tri-saccharides in water at 298.15, 308.15 and 318.15,K. J. Chem. Soc. Faraday Trans. 93, 81–87 (1997).

    Article  CAS  Google Scholar 

  11. Kumar, A., Badarayani, R.: (a) Effect of tetra- n-alkyl-ammonium bromides on the volumetric properties of glycine, L-alanine and glycylglycine at T = 298.15K. J. Chem. Thermodyn. 36, 49–58 (2004); (b) Viscometric study of glycine, L-alanine, glycylglycine in aqueous tetra- n-alkylammonium bromide solutions at 298.15K. J. Chem. Thermodyn. 36, 983–991 (2004).

    Article  CAS  Google Scholar 

  12. Archer, D.G.: Thermodynamic properties of the sodium chloride + water system. II. Thermodynamic properties of NaCl (aq). NaCl-2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992).

    Article  CAS  Google Scholar 

  13. Kell, G.S.: Density, thermal expansivity, and compressibility of liquid water from 0° to 150,°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale, J. Chem. Eng. Data 20, 97–105 (1975).

    Article  CAS  Google Scholar 

  14. Shahidi, F., Farrell, P.G., Edward, J.T.: Partial molar volumes of organic compounds in water. III. Carbohydrates. J. Solution Chem. 5, 807–816 (1976).

    Article  CAS  Google Scholar 

  15. Zhuo, K., Wang, J., Wang, H., Yue, Y.: Apparent molar volumes, and interaction parameters for the monosaccharide (D-xylose, D-arabinose, D-glucose, D-galactose)-NaBr-water systems at 298.15K. Z. Phys. Chem. 215, 561–573 (2001).

    CAS  Google Scholar 

  16. Miyajima, K., Sawada, M., Nakagaki, M.: Studies on aqueous solutions of saccharides. II. Viscosity B-coefficients, apparent molar volumes, and activity coefficients of D-glucose, maltose and maltotriose in aqueous solutions. Bull. Chem. Soc. Jpn. 56, 1954–1957 (1983).

    Article  CAS  Google Scholar 

  17. Timasheff, S.N., Arakawa, T.: In: Creighton, T.E. (ed.) Protein Structure—A Practical Approach. IRL Press, Oxford, p. 331 (1990)

    Google Scholar 

  18. Jasra, R.V., Ahluwalia, J.C.: Enthalpies of solution, partial molar heat capacities and apparent molar volumes of sugars and polyols in water. J. Solution Chem. 11, 325–338 (1982).

    CAS  Google Scholar 

  19. Schmidt, R.K., Karplus, M., Brady, J.W.: The anomeric equilibrium in D-xylose: Free energy and the role of solvent structuring. J. Amer. Chem. Soc. 118, 541–546 (1996).

    Article  CAS  Google Scholar 

  20. (a) Suggett, A.: Molecular motion and interactions in aqueous carbohydrate solutions. III. A combined nuclear magnetic and dielectric-relaxation strategy. J. Solution Chem. 5, 33–46 (1975); (b) Suggett, A., Ablett, S., Lillford, P.J.: Molecular motion and interactions in aqueous carbohydrate solutions. II. Nuclear magnetic-relaxation studies. J. Solution Chem. 5, 17–31 (1976).

    Article  Google Scholar 

  21. Franks, F., Ravenhill, J.R., Reid, D.S.: Thermodynamic studies of dilute aqueous solutions of cyclic ethers and simple carbohydrates. J. Solution Chem. 1, 3–16 (1972).

    Article  CAS  Google Scholar 

  22. Wen, W.-Y.: In: Horne, R.A. (ed.) Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes. Wiley, New York, Chap. 15 (1972).

    Google Scholar 

  23. Frank, H.S., Wen, W.-Y.: Ion-solvent interactions; structural aspects of ion-solvent interaction in aqueous solutions: A suggested picture of water structure. Discuss. Faraday Soc. 24, 133–140 (1957).

    Article  Google Scholar 

  24. (a) Kay, R.L., Vituccio, T., Zawoyski, C., Evans, D.F.: Viscosity B-coefficients for the tetraalkylammonium halides, J. Phys. Chem. 70, 2336–2341 (1966); (b) Kay, R.L., Evans, D.F.: The conductance of the tetaalkyl-ammonium halides in deutrium oxide solutions at 25,°C. J. Phys. Chem. 69, 4216–4221 (1965); (c) The effect of solvent structure on the mobility of symmetrical ions in aqueous solution. J. Phys. Chem. 70, 2325–2335 (1966).

    Article  CAS  Google Scholar 

  25. Nightingale, E.R.: Viscosity of aqueous solutions. III. Tetra-methylammonium bromide and the role of the tetra-alkylammonium ions. J. Phys. Chem. 66, 894–897 (1964).

    Article  Google Scholar 

  26. Millero, F.J.: In: Horne, R.A. (ed.) Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes. John Wiley and Sons, Inc., New York, Chap. 13 (1972).

    Google Scholar 

  27. Wen, W.-Y., Saito, S.: Apparent and partial molar volumes of five symmetrical tetraalkylammonium bromides in aqueous solutions. J. Phys. Chem. 68, 2639–2646 (1964).

    Article  CAS  Google Scholar 

  28. Gurney, R.W.: Ionic Processes in Solution, Vol. 3. Mc Graw Hill, New York, Chap. 1 (1953).

    Google Scholar 

  29. Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of alkali halides in water at 25,°C, influence of structural hydration interactions on concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969).

    Article  CAS  Google Scholar 

  30. de Visser, C., Perron, G., Desnoyers, J.E.: Volumes and heat capacities of ternary systems at 25°. Mixtures of urea, tert-butyl alcohol, dimethylformamide and water. J. Am. Chem. Soc. 99, 5894–5900 (1977).

    Article  Google Scholar 

  31. (a) Dipaola, G., Belleau, B.: Apparent molal volumes and heat capacities of some tetraalkylammonium bromides, alkyl-trimethylammonium bromides, and alkali halides in aqueous glycerol solutions. Can. J. Chem. 53, 3452–3461 (1975); (b) Polyol-water interactions. Apparent molal heat capacities and volumes of aqueous polyol solutions. Can. J. Chem. 55, 3825–3830 (1977).

    Article  CAS  Google Scholar 

  32. Chatterjee, J.P., Basumallick, I.N.: Thermodynamics of transfer of electrolytes and ions from water to aqueous solutions of polyhydroxy compounds. J. Chem. Soc. Faraday Trans. 86, 3107–3110 (1990).

    Article  CAS  Google Scholar 

  33. McMillan Jr., W.G., Mayer, J.E.: The statistical thermodynamics of multicomponent systems. J. Chem. Phys. 13, 276–305 (1945).

    Article  CAS  Google Scholar 

  34. Kozak, J.J., Knight, W., Kauzmann, W.: Solute-solute interactions in aqueous solutions. J. Chem. Phys. 68, 675–690 (1968).

    Article  Google Scholar 

  35. Friedman, H.L., Krishnan, C.V.: In: Franks, F. (ed.) Water—A Comprehensive Treatise. Plenum Press, New York, Vol. 3. Chap. 1 (1973).

    Google Scholar 

  36. Franks, F., Pedley, M., Reid, D.S.: Solute interactions in dilute aqueous solutions. Part-1. Microcalorimetric study of the hydrophobic interaction. J. Chem. Soc. Faraday Trans.1. 72, 359–367 (1976).

    Article  CAS  Google Scholar 

  37. Donald, H., Jenkins, B., Marcus, Y.: Viscosity B-coefficients of ions in solutions. Chem. Rev. 95, 2695–2724 (1995).

    Article  Google Scholar 

  38. Glasstone, S., Laidler, K.J., Eyring, H.: Theory of Rate Processes. Mc Graw Hill, New York, p. 477 (1941).

    Google Scholar 

  39. (a) Feakins, D., Waghorne, W.E., Lawrence, K.G.: The viscosity and structure of solutions—part 1. A new theory of the Jones-Dole B-coefficient and the related activation parameters: Application to aqueous solutions. J. Chem. Soc. Faraday Trans. 1, 82, 563–568 (1986); (b) Feakins, D., Bates, F.M., Waghorne, W.E., Lawrence, K.G.: Relative viscosities and quasi thermodynamics of solutions of tert-butyl alcohol in the methanol-water system: a different view of the alkyl-water interaction. J. Chem. Soc. Faraday Trans. 89, 3381–3388 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parampaul K. Banipal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banipal, P.K., Gautam, S., Dua, S. et al. Effect of Ammonium Salts on the Volumetric and Viscometric Behavior of D(+)-Glucose, D(−)-Fructose and Sucrose in Aqueous Solutions at 25°C. J Solution Chem 35, 815–844 (2006). https://doi.org/10.1007/s10953-006-9029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9029-x

Keywords

Navigation