Skip to main content
Log in

Volumetric, Electric, and Magnetic Properties of Thioxanthen-9-one in Aprotic Solvents as Revealed by High-Precision Densitometry, High-Accuracy Refractometry and Magnetic Susceptibility Measurements and by DFT Calculations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

High-precision densitometry measurements of solutions of thioxanten-9-one (TX) in 1,4-dioxane, DMSO, toluene, and benzene have been obtained at 293.15, 303.15, 313.15, 323.15, 333.15, and 343.15K. The partial molar volumes of TX (\(\bar V _2\)) and the corresponding values at infinite dilution (\(\bar V _{2,0}\)) were determined. The partial molar expansibility (\(\bar E _{2,0}\)) of TX at infinite dilution in each solvent is temperature independent. Dynamic electronic polarizabilities \(\bar \alpha _{2(\nu)}\) of TX in each aprotic solvent were determined by the Singer–Garito approach. These values are in excellent concordance with the theoretical value for TX of 2.611×10−23cm3 estimated here using DFT/B3LYP/6-311++G(d,p). The partial molar volumes of TX at infinite dilution were calculated and interpreted in terms of the Scale Particle Theory (SPT). The solvent influence on the partial molar volume of TX was found to be due mainly to cavity formation and intermolecular dispersion forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Horwitz, I. Massova, T. E. Wiese, B. H. Besler, and T. H. Corbett, Comparative Molecular Field Analysis of the Antitumor Activity of 9H-Thiioxanthen-9-one Derivatives against Pancreatic Ductal Carcinoma 03, J. Med. Chem. 37, 781–786 (1994).

    Article  CAS  Google Scholar 

  2. K. A. Fletcher, K. S. Coym, L. E. Roy, C. E. Hernandez, M. E. R. McHale, and W. E. Acree, Solubility of Thioxanthen-9-one in Organic Nonelectrolyte Solvents. Comparison of Observed Versus Predicted Values Based upon Mobile Order Theory, Phys. Chem. Liq. 35, 243–525 (1998).

    CAS  Google Scholar 

  3. T. V. Chalikian and K. J. Breslauer, Volumetric Properties of Nucleic Acid, Biopolymers (Nucleic Acid Sci.) 48, 264–282 (1998).

    CAS  Google Scholar 

  4. M. A. Muñoz, O. Sama, M. Galán, P. Guardado, C. Carmona, and M. Balón, Interactions between Betacarboline and Benzenoid π Bases: FTIR Evidence for the Formation of NH-π Hydrogen Bonds, J. Phys. Chem. B. 103, 8794–8798 (1999).

    Google Scholar 

  5. H. Wang and A. Ben-Naim, A Possible Involvement of Solvent-Induced Interactions in Drug Desig, J. Med. Chem. 39, 1531–1539 (1996).

    CAS  Google Scholar 

  6. P. Suppan and N. Ghoneim, Solvatochromism (The Royal Society of Chemistry, Cambridge, 1997).

  7. S. B. Howerton, A. Nagpal, and L. D. Willians, Surprising Roles of Electrostatic Interactions in DNA-Ligand Complexes, Biopolymers 69, 87–99 (2003).

    Article  CAS  Google Scholar 

  8. I. Haq and J. Ladbury, Drug–DNA Recognition: Energetics and Implications for Design, J. Mol. Recog. 13, 188–197 (2000).

    CAS  Google Scholar 

  9. J. B. Chaires, Energetics of Drug–DNA Interactions, Biophys. Chem. 65, 201–217 (1998).

    Google Scholar 

  10. D. N. Dubins, R. Filfil, R. B. Macgregor, Jr., and T. V. Chalikian, Role of Water in Protein–Ligand Interactions: Volumetric Characterization of the Binding of 2′-CMP and 3′-CMP to Ribonuclease A, J. Phys. Chem. B. 104, 390–401 (2000).

    Article  CAS  Google Scholar 

  11. Ch. Medhi, J. B. O. Mitchell, S. L. Prince, and A. B. Tabor, Biopolymers (Nucleic Acid Sci.) 25, 84–93 (1999).

    Google Scholar 

  12. J. Reynisson, G. B. Schuster, S. B. Howerton, L. D. Williams, R. N. Bamett, C. L. Cleveland, U. Landman, N. Harril, and J. B. Chaires, Intercalation of Trioxatriangulenium Ion in DNA: Binding, Electron Transfer, X-ray Crystallography, and Electronic Structure, J. Am. Chem. Soc. 125, 2072–2083 (2003).

    Article  CAS  Google Scholar 

  13. Likhodi and T. V. Chalikian, Differential Hydration of α,ω-Aminocarboxylic Acids in D2O and H2O, J. Am. Chem. Soc. 122, 7860–7868 (2000).

    Article  CAS  Google Scholar 

  14. J. Ren, T. C. Jenkins, and J. B. Chaires, Energetics of DNA Intercalation Reactions, Biochemistry 39, 8439–8447 (2000).

    Article  CAS  Google Scholar 

  15. F. Han and T. V. Chalikian, Hydration Changes Accompanying Nucleic Acid Intercalation Reactions: Volumetric Characterizations, J. Am. Chem. Soc. 125, 7219–7229 (2003).

    CAS  Google Scholar 

  16. M. Kishnamurthy, B. D. Gooch, and P. A. Beal, Peptide Quinoline Conjugates: A New Class of RNA-Binding Molecules, Org. Lett. 6, 63–66 (2004).

    Google Scholar 

  17. Y. J. Alvarado, N. Cubillán, P. H. Labarca, A. Karma, F. Arrieta, O. Castellano, and H. Soscún, Static and Dynamic Dipole Polarizabilities of 2-and 3-methylthiophenes in Solution: Experimental and Theoretical Determination, J. Phys. Org. Chem. 15, 154–164 (2002).

    CAS  Google Scholar 

  18. H. Soscún, Y. Alvarado, J. Hernández, P. Hernández, R. Atencio, and A. Hinchliffe, Experimental and Theoretical Determination of the dipole Polarizability of Dibenzothiophene, J. Phys. Org. Chem. 14, 709–715 (2001).

    Article  Google Scholar 

  19. Y. J. Alvarado, H. Soscún, W. Velazco. P. H. Labarca, N. Cubillán, and J. Hernandez, Dipole Polarizability of the Pyrazabole Molecule in Solution, J. Phys. Org. Chem. 15, 835–843 (2002).

    CAS  Google Scholar 

  20. Y. J. Alvarado, J. L. Peña-Suárez, N. Cubillán, P. H. Labarca, J. A. Caldera-Luzardo, and F. López-Linares, Influence of the Dielectric Medium on the Carbonyl Infrared Absorption Peak of Acetylferrocene, Molecules 10, 457–474 (2005).

    CAS  Google Scholar 

  21. Y. J. Alvarado, P. H. Labarca, N. Cubillán, E. Osorio, and A. Karam, Solvent Effect on the Electronic Polarizability of Benzonitrile, Z. Naturforsch. 58a, 68–74 (2003).

    Google Scholar 

  22. M. J. Blandamer and H. Hoiland, Volumetric Properties of Solutions: A Novel Method of Data Analysis Yielding Partial Molar Volumes and Partial Molar Expansions of Solutes, Phys. Chem. Chem. Phys. 1, 1873–1875 (1999).

    Article  CAS  Google Scholar 

  23. M. J. Blandamer, M. I. Davis, G. Douhéret, and J. C. R. Reis, Apparent Molar Isentropic Compressions and Expansions of Solutions, Chem. Soc. Rev. 30, 8–15 (2001).

    Article  CAS  Google Scholar 

  24. A. W. Hakin and G. R. Hedwig, The Partial Molar Heat Capacities and Volumes of some N-acetyl Amino Acid Amides in Aqueous Solution over the Temperature Range 288.15 K to 328.15 K, Phys. Chem. Chem. Phys. 2, 1795–1802 (2000).

    CAS  Google Scholar 

  25. A. W. Hakin, H. Hoiland, and G. R. Hedwig, Volumetric Characterization of Homopolymeric Amino Acids, Phys. Chem. Phys. 2, 4850–4857 (2000).

    CAS  Google Scholar 

  26. S. Wurzburger, R. Sartorio, G. Guarino, and M. Nisi, J. Chem. Soc., Faraday Trans. 1 84, 2279–2287 (1998).

    Google Scholar 

  27. J. L. Lebowitz, E. Helfand, and E. Praestgaard, Scaled Particle Theory of Fluid Mixtures, J. Chem. Phys. 43, 774–779 (1965).

    Article  CAS  Google Scholar 

  28. R. A. Pierotti, A Scaled Particle Theory of Aqueous and Nonaqueous Solutions, Chem. Rev. 76, 717–726 (1976).

    Article  CAS  Google Scholar 

  29. M. Sakurai, Partial Molar Volumes in Aqueous Mixtures of Nonelectrolytes. IV. Aromatic Hydrocarbons, Bull. Chem. Soc. Jpn. 63, 1695–1699 (1990).

    CAS  Google Scholar 

  30. V. F. Stolypin, Complexation of 18-CROWN-6-eter with Acetonitrile, Russ. J. Phys. Chem. 71, 1969–1973 (1997).

    Google Scholar 

  31. R. A. Pierotti, Aqueous Solutions of Nonpolar Gases, J. Phys. Chem. 69, 281–288 (1965).

    CAS  Google Scholar 

  32. V. F. Stolypin and A. I. Mishustin, Calculation of the Contribution from Van der Waals Interactions to the Volume Properties of Binary Mixtures of Dipolar Aprotic Solvents, Russ. J. Phys. Chem. 61, 1700–1703 (1987).

    Google Scholar 

  33. V. F. Stolypin and A. L. Mishustin, Calculation of the Contribution from Van der Waals interactions to the Thermodynamic Properties of Binary mixtures of Dipolar Aprotic solvents, Russ. J. Phys. Chem. 61, 1703–1705 (1987).

    Google Scholar 

  34. E. Ayranci and G. Akgul, Apparent Molar Volumes and Viscosities of Lauric, Palmitic, and Stearic Acids in 2-Butanol at (20, 30, 40, and 60) C, J. Chem. Eng. Data. 48, 56–60 (2003).

    Article  CAS  Google Scholar 

  35. W. G. McMillan and J. E. Mayer, The Statistical Thermodynamics of Multicomponent Systems, J. Chem. Phys. 13, 276–305 (1945).

    Article  CAS  Google Scholar 

  36. D. R. Tasic and C. Klofutar, Apparent Molar Volume and Expansibility of Cyclohexanol in Benzene and Cyclohexane Solutions, Monatsh. Chem. 129, 1245–1257 (1998).

    Google Scholar 

  37. D. P. Kharakoz, Volumetric Properties of Proteins and Their Analogs in Dilute Water Solutions: 1. Partial Volumes of Amino Acids at 15–55 C, Biophys. Chem. 34, 115–125 (1989).

    Article  CAS  Google Scholar 

  38. C. Klofutar, S. Pajik, and S. Golc-Teger, Partial Molar Volumes and Partial Molar Expansibilities of Cholesterol in some Aprotic Solvents, Thermochim. Acta 196, 401–413 (1992).

    Article  CAS  Google Scholar 

  39. R. N. French and C. M. Criss, Effect of Solvent on the Partial Molal Volumes and Heat Capacities of Nonelectrolytes, J. Solution Chem. 10, 713–741 (1981).

    Article  CAS  Google Scholar 

  40. J. Ortega and J. S. Matos, Excess Molar Volumes of (ethyl formate or ethyl acetate + 1-chloroalkane) at 298.15 K, J. Chem. Eng. Data. 32, 464–466 (1987).

    Article  CAS  Google Scholar 

  41. E. F. G. Barbosa, S. M. C. Sousa, M. S. C. S. Santos, and I. M. S. Lampreia, Partial Molar Volumes of Linear Hydrocarbons in Methanol in the very Dilute Region. Intermolecular Interactions: H-bond Effects, Phys. Chem. Chem. Phys. 3, 556–561 (2001).

    Article  CAS  Google Scholar 

  42. K. D. Singer and A. F. Garito, The Chemistry of Thorium. IV. Some Observations on Thorium Hypophosphate, J. Am. Chem. Soc. 75, 3572–3580 (1981).

    CAS  Google Scholar 

  43. C. J. F. Böttcher, Theory of Dielectric Polarization, Vol. 1 (Elsevier, Amsterdam, 1973).

  44. C. J.-L. M. Abboud and R. Notario, Critical Compilation of Scales of Solvent Parameters. Part I. Pure, Non-hydrogen Bond Donor Solvents (II2), Pure Appl. Chem. 71, 645–718, (1999).

    CAS  Google Scholar 

  45. M. Gussoni, M. Rui, and G. J. Zerbi, Electronic and Relaxation Contribution to Linear Molecular Polarizability. An Analysis of the Experimental Values, J. Mol. Struct. 447, 163–215 (1998).

    Article  CAS  Google Scholar 

  46. K. J. Miller and J. A. Savchik, A New Empirical Method to Calculate Average Molecular Polarizabilities, J. Am. Chem. Soc. 101, 7206–7213 (1979).

    CAS  Google Scholar 

  47. M. Navarro, T. Lehmann, E. J. Cisneros-Fajardo, A. Fuentes, R. A. Sanchez-Delgado, P. Silva, and J. A. Urbina, Toward a Novel Metal-based Chemotherapy Against Tropical Diseases: Part 5. Synthesis and Characterization of New Ru(II) and Ru(III) Clotrimazole and Ketoconazole Complexes and Evaluation of Their Activity Against Trypanosoma cruzi, Polyhedron 19, 2319–2325 (2000).

    Article  CAS  Google Scholar 

  48. M. Navarro, E. J. Cisnero-Fajardo, T. Lehmann, R. A. Sánchez-Delgado, R. Atencio, P. Silva, R. Lira, and J. A. Urbina, Toward a Novel Metal-Based Chemotherapy against Tropical Diseases. 6. Synthesis and Characterization of New Copper(II) and Gold(I) Clotrimazole and Ketoconazole Complexes and Evaluation of Their Activity against Trypanosoma cruzi, Inorg. Chem. 40, 6879–6884 (2001).

    Article  CAS  Google Scholar 

  49. C. Párkányit, C. Boniface, J. J. Aaron, and M. Maafi, A Quantitative Study of the Effect of Solvent on the Electronic Absorption and Fluorescence Spectra of Substituted Phenothiazines: Evaluation of Their Ground and Excited Singlet-state Dipole Moments, Spectrochim. Acta. Part A 49, 1715–1725 (1993).

    Google Scholar 

  50. CRC, Handbook of Chemistry & Physics on CD-ROM, Version 0.9 (Hampden Data Services Ltd., 2002).

  51. A. Proutiére, M. Hérail, M. Le Guennec, and D. Le Goff, Molecular Weight Determination from Light Scattering and Refraction in Solutions. A New and Coherent Theoretical Equation, J. Mol. Struct. 380, 171–193 (1996).

    Google Scholar 

  52. S. Bamba, A. Proutiére, and M. Chabanel, Rayleigh Light Scattering, Isothermal Compressibility and Kerr Constant of Pure Liquid. Agreement Obtained with Consistent Theoretical Relation, J. Chim. Phys. 89, 615–628 (1992).

    CAS  Google Scholar 

  53. J. J. Aaron, M. D. Gaye, C. Párkányi, C. Boniface, T. W. N. Bieze, S. S. Atik, K. S. RaghuVeer, L. von Szenpály, and R. Ghosh, Solvent Effects upon the Electronic Absorption and Fluorescence Spectra of Pteridines and Riboflavin and Their Ground and First Excited Singlet-state Dipole Moments, Pterid 3, 153–163 (1996).

    Google Scholar 

  54. S. A. Rani, J. Sobhanadri, and T. A. Prasada, Determination of the Excited Static Dipole Moment of Fluorenone Using the Method of Solvatochromisms, Spectrochim. Acta A 51, 2473–2479 (1995).

    Google Scholar 

  55. S. Bruni, E. Cariati, F. A. Porta, S. Quici, and D. Roberto, Determination of the Quadratic Hyperpolarizability of Trans-4-[4-(dimethylamino)styryl]pyridine and 5-Dimethylamino-1,10-phenanthroline from Solvatochromism of Absorption and Fluorescence Spectra: A Comparison with the Electric-field-induced Second-harmonic Generation Technique, Spectrochim. Acta A 57, 1417–1426 (2001).

    CAS  Google Scholar 

  56. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian Inc., Pittsburgh, PA, 2003.

  57. M. Sakurai, Parcial Molar Volumes in Aqueous Mixture of Nonelectrolytes. IV. Aromatic Hydrocarbons, Bull. Chem. Soc. Jpn. 63, 1695–1699 (1990).

    CAS  Google Scholar 

  58. L. Blum and W. R. Fawcett, Simple Model for the Dielectric Behavior of Polar Solvents in the Mean Spherical Approximation, J. Phys. Chem. 97, 7185–7188 (1996).

    Google Scholar 

  59. L. P. Cheng, W. Tan, and S. Stevenson, Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives, J. Phys. Chem. 95, 10631–10643 (1991).

    CAS  Google Scholar 

  60. F. Morlet-Savary, L. P. Jacques, F. Wieder, and J. P. Fouassier, Time Dependent Solvent Effects on the T1-T N Absorption Spectra of Thioxanthone: A Picoseconds Study, J. Photochem. Photobiol. A: Chem. 126, 7–14 (1999).

    Article  CAS  Google Scholar 

  61. P. Ruelle, A. Farina-Cuendet, and U. W. Kesselring, Changes of Molar Volume from Solid to Liquid and Solution: The Particular Case of C60, J. Am. Chem. Soc. 118, 1777–1784 (1996).

    Article  CAS  Google Scholar 

  62. S. Mizyed, P. E. Georghiou, and M. Asham, Thermodynamic Study of the Complexes of Calix[4]-Naphthalenes with [60]-Fullerene in Different Solvents, J. Chem. Soc., Perkin Trans. 2, 277–281 (2000).

    Google Scholar 

  63. S. Mizyed, P. R. Tremaine, and P. E. Georghiou, Partial Molar Volumes Study of the Complexes of Calix[4]-naphthalenes with [60]-Fullerene in Different Solvents, J. Chem. Soc. Perkin Trans. 2, 3–6 (2001).

    Google Scholar 

  64. J. Malecki and J. Jadzyn, Dielectric Polarization of Dilute Association Solutions. V. Solvation of Alcohols in Nondipolar Solvents, J. Phys. Chem. 78, 1203–1206 (1974).

    Article  CAS  Google Scholar 

  65. A. G. Gilani, M. Mamaghani, and L. Anbir, Dipole Moments and Intermolecular Association of some Carbonyl Compounds in Nonpolar Solvents, J. Solution Chem. 32, 625–635 (2003).

    Article  CAS  Google Scholar 

  66. R. B. Martin, Comparisons of Indefinite Self-Association Models, Chem. Rev. 96, 3043–3063 (1996).

    Article  CAS  Google Scholar 

  67. A. Ghanadzadeh Gilani, M. Mamaghani, and L. Anbir, Dipole Moments and Intermolecular Association of Some Carbonyl Compounds in Nonpolar Solvents, J. Solution Chem. 32, 625–636 (2003).

    Google Scholar 

  68. J. Ch. Dalton and F. C. Montgomery, Solvent Effects on Thioxanthone Fluorescence, J. Am. Chem. Soc. 96, 6230–6232 (1974).

    Article  CAS  Google Scholar 

  69. S. Ghosal, M. Samoc, P. N. Prasad, and J. J. Tufariello, Optical Nonlinearities of Organometallic Structures: Aryl and Vinyl Derivatives of Ferrocene, J. Phys. Chem. 94, 2847–2851 (1990).

    Article  CAS  Google Scholar 

  70. M. Kodaka, Correlation between Molecular Size and Packing Density of Solvents, J. Phys. Chem. B. 108, 1160–1164 (2004).

    Article  CAS  Google Scholar 

  71. H. Lumbroso, J. Curé, and M. Evers, A Physical Study on the Aromaticity of 4H-pyran-4-one, 9H-Xanthen-9-one, and Related Sulphur Compounds, Z. Naturforsch. 41a, 1250–1257 (1986).

    CAS  Google Scholar 

  72. Y. Koga, H. Takahashi, and K. Higasi, Dielectric Relaxation and Molecular Structure. VII. Structure of the Molecules of Diphenylene Dioxide Type, Bull. Chem. Soc. Jpn. 46, 3359–3363 (1973).

    CAS  Google Scholar 

  73. C. Levayer, A. M. Galy, and J. Barbe, Dipole Moments and Conformational Structures of 2-substituted Phenothiazines as Solutes, J. Pharm. Sci. 69, 116–117 (1980).

    CAS  Google Scholar 

  74. A. Purkayastha and J. Walkley, Scaled particle Theory for Nonelectrolyte Solutions of Dilute Solid Solutes, J. Phys. Chem. 76, 2138–2139 (1972).

    Article  CAS  Google Scholar 

  75. N. T. Southall, K. A. Dill, and A. D. J. Haymet, A View of the Hydrophobic Effect, J. Phys. Chem. B. 106, 521–533 (2002).

    CAS  Google Scholar 

  76. M. Chastrette, M. Rajzmann, M. Chanon, and K. Purcell, Approach to a General Classification of Solvents Using a Multivariate Statistical Treatment of Quantitative solvent Parameters, J. Am. Chem. Soc. 107, 1–11 (1985).

    Article  CAS  Google Scholar 

  77. W. Kolling, Aprotic Solvent Effects upon the Fundamental Vibrational Peak of the Nitrile Group in Benzonitrile, Appl. Spectrosc. 54, 890–893 (2000).

    Article  CAS  Google Scholar 

  78. W. Zhong, J.-S. Yu, W. Huang, K. Ni, and Y. Liang, Spectroscopic Studies of Interaction of Chlorobenzylidine with DNA, Biopolymers (Biospectroscopy) 62, 315–??? (2001).

    CAS  Google Scholar 

  79. S. C. Beck and D. T. Cramb, Condensed Phase Dispersive Interactions of Benzo[a]pyrene with Various Solvents and with DNA: A Twist on Solvatochromism, J. Phys. Chem. B 104, 2767–2774 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ysaías J. Alvarado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, Y.J., Caldera-Luzardo, J., De La Cruz, C. et al. Volumetric, Electric, and Magnetic Properties of Thioxanthen-9-one in Aprotic Solvents as Revealed by High-Precision Densitometry, High-Accuracy Refractometry and Magnetic Susceptibility Measurements and by DFT Calculations. J Solution Chem 35, 29–49 (2006). https://doi.org/10.1007/s10953-006-8937-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-8937-0

KEY WORDS

Navigation