Skip to main content
Log in

Potentiometric Study of the Effect of Sodium Dodecylsulfate and Dioxane on the Hydrolysis of the Aluminum(III) Ion

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Hydrolytic equilibria of the aluminum(III) ion were studied in the presence of a surfactant, sodium n-dodecylsulfate (SDS) and, separately, in mixed water + dioxane and water + dioxane + surfactant media at 298.15 K, by using potentiometric measurements with a glass electrode. The concentration of SDS was between 1.25 and 25.0 mmol-dm−3, whereas the volume percent of dioxane was varied from 10 to 50. The supporting strong electrolyte was 0.1 mol-dm−3 LiCl. A general least-squares treatment of the data indicates the formation of mononuclear hydrolytic complexes of the form Al(OH) m 3 − m (m = 1–3) at all studied compositions. At lower concentrations of SDS (≤ 12.5 mmol-dm−3) it was necessary to include polynuclear hydrolytic complexes in the hydrolytic model. On increasing the concentration of SDS, the formation of polynuclear complexes is suppressed, and at the SDS concentration of 25.0 mmol-dm−3, only Al(OH)2+ and Al(OH)2 + are observed in solution. At lower volume percentages of dioxane, the speciation involved polynuclear complexes in addition to mononuclear complexes. At dioxane concentrations higher than 20 vol% only mononuclear complexes are formed. The simultaneous presence of the SDS and dioxane as ionic medium modifiers produces only the mononuclear complexes Al(OH)2+ and Al(OH)2 +, which have significantly higher stability constants than in the pure ionic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Orvig, in Coordination Chemistry of Aluminum, G. H. Robinson, Ed. (VCH Publisher, New York, 1993), pp. 85–121.

    Google Scholar 

  2. C. F. Baes, Jr. and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), pp. 112–123.

    Google Scholar 

  3. P. L. Hayden and A. J. Rubin,in Aqueous Environmental Chemistry of Metals, A. J. Rubin, Ed. (Ann Arbor Science, Ann Arbor, MI, 1976); A. Sarpola, V. Hietapelto, J. Jalonen, J. Jokela, and R. S. Laitinen, J. Mass. Spectrom. 39, 423 (2004).

  4. D. K. Nordstrom and H. M. May, in The Environmental Chemistry of Aluminum, G. Sposito, Ed. (CRC Press, Lewis Publishers, Boca Raton, 1996), pp. 39–80.

    Google Scholar 

  5. R. B. Martin, Clin. Chem. 32, 1797 (1986); W. Stamm and J. J. Morgan, Aquatic Chemistry, 2nd edn. (Wiley, New York, 1981).

  6. D. J. Wesolowski and D. A. Palmer, Geochim. Cosmochim. Acta 58, 2947 (1994).

    Article  CAS  Google Scholar 

  7. D. A. Palmer and D. J. Wesolowski, Geochim. Cosmochim. Acta 57, 2929 (1993).

    CAS  Google Scholar 

  8. L.-O. Ohman, Inorg. Chem. 27, 2565 (1988).

    Google Scholar 

  9. T. Hedlund, S. Sjoberg, and L.-O. Ohman, Acta Chem. Scand. A 41, 197 (1987).

    Google Scholar 

  10. J. W. Akitt, Prog. Nucl. Magn. Reson. Spectrosc. 21, 1 (1989); J. M. Elders, NMR Studies of the Polymeric Cations Produced by the Hydrolysis of Aqueous Aluminium(III) Salt Solutions, Ph.D. Thesis (University of Leeds, Leeds, 1986).

  11. J. W. Akitt and J. M. Elders, Bull. Soc. Chim. Fr. 10 (1985).

  12. P. M. Bertsch and D. R. Parker, in The Environmental Chemistry of Aluminum, G. Sposito, Ed. (CRC Press, Lewis Publishers, Boca Raton, 1996), pp. 117–168.

    Google Scholar 

  13. C. Brosset, G. Bidermann, and L. G. Sillen, Acta Chem. Scand. 8, 1917 (1954).

    Article  CAS  Google Scholar 

  14. P. L. Brown, R. N. Sylva, G. E. Batley, and J. Ellis, J. Chem. Soc. Dalton Trans. 1967 (1985).

  15. M. J. Rosen, Surfactants and Interfacial Phenomena, 2nd edn. (Wiley, New York, 1989).

    Google Scholar 

  16. P. H. Elworthy, A. T. Florence, and C. B. MacFarlane, Solubilization by Surface Active Agents (Chapman & Hall, London, 1968).

    Google Scholar 

  17. F. Talens, P. Paton, and S. Gaya, Langmuir 14, 5046 (1998).

    Article  CAS  Google Scholar 

  18. S. B. Savvin, R. K. Chernova, and S. N. Shtykov, Surface Active Substances (in Russian) (Nauka, Moskva, 1991).

  19. J. E. Gordon, The Organic Chemistry of Electrolyte Solutions (Wiley, New York, 1975); Russian translation (Mir, Moskva, 1979).

  20. F. I. Talens-Alesson, S. Anthony, and M. Bryce, Water Res. 38, 1477 (2004), and references therein.

  21. P. Paton-Morales and F. I. Talens-Alesson, Langmuir 17, 6059 (2001).

    Article  CAS  Google Scholar 

  22. P. Paton and F. I. Talens-Alesson, Colloid. Polym. Sci. 279, 196 (2001).

    Article  Google Scholar 

  23. M. Vasilescu, D. Angelescu, H. Caldararu, M. Almgren, and A. Khan, Colloids Surf. A Physicochem. Eng. Aspects 235, 57 (2004)

    Article  CAS  Google Scholar 

  24. D. Angelescu, A. Khan, and H. Caldararu, Langmuir 19, 9155 (2003).

    CAS  Google Scholar 

  25. A. Caragheorgheopol, H. Caldararu, M. Vasilescu, A. Khan, D. Angelescu, N. Zivkova, and J. Cejka, J. Phys. Chem. B 108, 7735 (2004)

    Article  CAS  Google Scholar 

  26. A. Jakubowska, Z. Phys. Chem. 218, 1297 (2004).

    CAS  Google Scholar 

  27. P. Mukerjee and K. J. Mysels, Critical Micelle Concentrations of Aqueous Surfactant Systems (NSRDS-NBS 36) (US Government Printing Office, Washington, DC, 1971).

    Google Scholar 

  28. P. Djurdjevic, R. Jelic, and D. Dzajevic, Main Group Metal Chem. 23, 409 (2000).

    CAS  Google Scholar 

  29. T. H. U. Tebbutt, Principles of Water Quality Control, 3rd edn. (Pergamon Press, Oxford, 1983), pp. 96–133.

    Google Scholar 

  30. T. E. Lewis, Environmental Chemistry and Toxicology of Aluminum (Lewis Publishers, Chelsea, 1987).

    Google Scholar 

  31. C. T. Driscoll and K. M. Postek, in The Environmental Chemistry of Aluminum, G. Sposito, Ed. (CRC Press, Lewis Publishers, Boca Raton, 1996), pp. 363–418.

    Google Scholar 

  32. H. M. Wisniewski and G. Y. Wen, Aluminum in Biology and Medicine, Ciba Foundation Symposium 169 (Wiley, Chichester, 1992), pp. 142–164; G. Berthon, Coord. Chem. Rev. 149, 241 (1996); G. Berthon, Coord. Chem. Rev. 228, 319 (2002).

  33. J. Y. Bottero and J. L. Berisllon, in Aquatic Humic Substances-Influence on Fate and Tretment of Pollutants, Advances in Chemistry Series No. 219, I. H. Suffet and P. MacCarthy, Eds. (American Chemical Society, Washington, 1989), pp. 425–442.

  34. A. G. Gonzalez and F. Pablos, Anal. Chim. Acta 251, 321 (1991).

    Article  CAS  Google Scholar 

  35. Y. Marcus and T. Mussini, Pure Appl. Chem. 63, 1647 (1991).

    Google Scholar 

  36. H. Sigel, A. Zuberbühler, and O. Yamauchi, Anal. Chim. Acta 255, 63 (1991).

    Article  CAS  Google Scholar 

  37. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd edn. (Reinhold, New Yorks, 1958).

    Google Scholar 

  38. J. P. Shukla and S. G. Tandon, Electroanal. Chem. Interfacial Electrochem. 35, 423 (1972).

    CAS  Google Scholar 

  39. L.-O. Ohman and S. Sjöberg, Coord. Chem. Rev. 149, 33 (1996); L.-O. Ohman, Chem. Geol. 151, 41 (1998).

    Google Scholar 

  40. P. Gans, A. Sabatini, and A. Vacca, J. Chem. Soc., Dalton Trans. 1195 (1985).

  41. H. Kubota, Properties and Volumetric Determination of Aluminum Ion, Dissertation Abstract 16 (University of Wisconsin), p. 864.

  42. S. L. Simpson, S. Sjöberg, and K. J. Powell, J. Chem. Soc., Dalton Trans. 1799 (1995).

  43. R. D. Oparin, M. V. Fedotova, A. A. Gribkov, and V. N. Trostin, Russ. Chem. Bull. Int. Edn. 52, 1482 (2003)

    CAS  Google Scholar 

  44. E. V. Vinogradov, P. R. Smirnov, and V. N. Trostin, Russ. Chem. Bull. Int. Edn. 52, 1253 (2003)

    CAS  Google Scholar 

  45. H. Galster, pH Measurements. Fundamentals, Methods, Applications, Instrumentation (VCH, Weinheim, 1991), pp. 6–42.

    Google Scholar 

  46. D. Wang, W. Sun, Y. Xu, H. Tang, and J. Gregory, Colloids Surf A Physicochem. Eng. Aspects 243, 1 (2004).

    Article  CAS  Google Scholar 

  47. Sh. Bi, Ch. Wang, Q. Cao, and C. Zhang, Coord. Chem. Rev. 248, 441 (2004).

    Article  CAS  Google Scholar 

  48. M. M. Shoukry, E. M. Shoukry, and S. M. El-Medani, Monatsh. Chem. 126, 909 (1995).

    CAS  Google Scholar 

  49. S. Murakami and T. Yoshino, J. Inorg. Nucl. Chem. 43, 2433 (1981).

    CAS  Google Scholar 

  50. T. Takamuku, A. Yamaguchi, D. Matsuo, M. Tabata, T. Yamaguchi, T. Otomo, and T. Adachi, J. Phys. Chem. B 105, 10101 (2001).

    CAS  Google Scholar 

  51. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 2nd edn. (VCH, Weinheim, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag T. Djurdjević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelić, R.M., Joksović, L.G. & Djurdjević, P.T. Potentiometric Study of the Effect of Sodium Dodecylsulfate and Dioxane on the Hydrolysis of the Aluminum(III) Ion. J Solution Chem 34, 1235–1261 (2005). https://doi.org/10.1007/s10953-005-8016-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-8016-y

Keywords

Navigation