Journal of Solution Chemistry

, Volume 34, Issue 10, pp 1167–1190 | Cite as

Dissociation of Fumaric Acid: Spectrophotometric Investigation in Aqueous Solutions from 10 to 90 C and Theoretical Considerations

Article

Abstract

The dissociation constants of fumaric acid were extracted from UV-vis spectra in the 10–90 C range. These values were used to extract thermodynamic parameters that showed the temperature effects on the dissociations reactions to be dominantly driven by the solvent. The molar absorption coefficients for the fumaric acid, the bifumarate and fumarate species, can be accurately reproduced with the two-term Gauss–Lorentz equation. Deconvolution of these bands showed strong π–π transitions for all species and weaker charge-transfer-to-solvent transitions for the charged species. TD-DFT calculations were used to identify the most important molecular orbitals involved in the vertical excitations of the fumaric acid species. The electron population and their states of delocalization were also estimated with topological analyses of the electron density and of the Becke–Edgecombe Electron Localization Function.

Keywords

Fumaric acid uv-vis spectrophotometry factor analysis TD-DFT AIM ELF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. Rozelle and R. A. Alberty, J. Phys. Chem. 61, 1637 (1957).CrossRefGoogle Scholar
  2. 2.
    L. E. Erickson and R. A. Alberty, J. Phys. Chem. 63, 705 (1959).CrossRefGoogle Scholar
  3. 3.
    J. L. Bada and S. L. Miller, J. Am. Chem. Soc. 91, 3948 (1969).Google Scholar
  4. 4.
    C. Mundi and M. H. Back, J. Photochem. Photobiol. A: Chem. 67, 13 (1992).CrossRefGoogle Scholar
  5. 5.
    J. S. Meek, J. Chem. Ed. 52, 541 (1975).CrossRefGoogle Scholar
  6. 6.
    A. M. Amat, G. Asensio, M. J. Castello, M. A. Miranda, and S. Simon-Fuentes, Tetrahedron 43, 905 (1987).CrossRefGoogle Scholar
  7. 7.
    J. Li and T. B. Brill, J. Phys. Chem. A 106, 9491 (2002).Google Scholar
  8. 8.
    J. L. Bada and S. L. Miller, Biochemistry 7, 3403 (1968).CrossRefGoogle Scholar
  9. 9.
    H. W. Ashton and J. R. Partington, Trans. Farad. Soc. 30, 598 (1934).CrossRefGoogle Scholar
  10. 10.
    R. M. C. Dawson, D. C. Elliott, W. H. Elliott, and K. M. Jones, Data for Biochemical Research. (Clarendon Press, Oxford, 1959).Google Scholar
  11. 11.
    J. L. Bada, Ph.D Thesis, University of California, 1968.Google Scholar
  12. 12.
    B. R. Das, U. N. Dash, and K. N. Panda, J. Chem. Soc. Faraday 76, 2152 (1980).Google Scholar
  13. 13.
    M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J. Chem. Phys. 108, 4439 (1998).CrossRefGoogle Scholar
  14. 14.
    R. E. Stratmann, G. E. Scuseria, and M. J. Frisch, J. Chem. Phys. 109, 8218 (1998).CrossRefGoogle Scholar
  15. 15.
    R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett. 256, 454 (1996).CrossRefGoogle Scholar
  16. 16.
    A. G. Baboul, L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 110, 7650 (1999).CrossRefGoogle Scholar
  17. 17.
    S. Miertus, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117 (1981).CrossRefGoogle Scholar
  18. 18.
    R. F. W. Bader, Atoms in Molecules: A Quantum Theory. (Clarendon Press. Oxford, U. K., 1990).Google Scholar
  19. 19.
    A. D. Becke and K. E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).Google Scholar
  20. 20.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).Google Scholar
  21. 21.
    C. T. Lee, W. T. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).Google Scholar
  22. 22.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, R. J. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. X. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98. revision A.11.1 (Gaussian, Inc., Pittsburgh PA, 2001).Google Scholar
  23. 23.
    E. Maçôas E. M. S., R. Fausto, J. Lundell, M. Pettersson, L. Khriachtchev, and M. Räsänen, J. Phys. Chem. A 105, 3922 (2001).Google Scholar
  24. 24.
    MORPHY98 is a program written by P. L. A. Popelier with a contribution from R. G. A. Bone, UMIST (Manchester, England, EU, 1998).Google Scholar
  25. 25.
    S. Noury, X. Krokidis, F. Fuster, and B. Silvi, Comput. Chem. 23, 597 (1999).CrossRefGoogle Scholar
  26. 26.
    A. Savin, A. D. Becke, J. Flad, R. Nesper, H. Preuss, and H. G. von Schnering, Angew. Chem. Int. 30, 409 (1991).Google Scholar
  27. 27.
    B. Silvi and A. Savin, Nature 371, 683 (1994).CrossRefGoogle Scholar
  28. 28.
    A. Savin, O. Jepsen, J. Flad, O. Andersen, H. Preuss, and J. G. von Schnering, Angew. Chem. Int. Engl. 31, 187 (1995).Google Scholar
  29. 29.
    S. Noury, N. Colonna, A. Savin, and B. Silvi, J. Mol. Struct. 450, 59 (1998).CrossRefGoogle Scholar
  30. 30.
    A. Savin, S. Silvi, and F. Colonna, Can. J. Chem. 23, 597 (1999).Google Scholar
  31. 31.
    S. Kawaguchi, T. Kitano, and K. Ito, Macromolecules 25, 1294 (1992).Google Scholar
  32. 32.
    W. Wagner and A. Kruse, Properties of Water and Steam (Springer-Verlag, Berlin, 1998), 354 pp.Google Scholar
  33. 33.
    W. L. Marshall and E. U. Franck, J. Phys. Chem. Ref. Data 10, 295 (1981).CrossRefGoogle Scholar
  34. 34.
    H. C. Helgeson, D. H. Kirkham, and G. C. Flowers, Am. J. Sci. 281, 1249 (1981).CrossRefGoogle Scholar
  35. 35.
    G. H. Golub and C. Reinsch, Numer. Math. 14, 403 (1970).CrossRefGoogle Scholar
  36. 36.
    E. R. Malinowski, Anal. Chim. 49, 612 (1977).Google Scholar
  37. 37.
    M. Meloun, J. Čapek, P. Mikšik, and R. G. Brereton, Anal. Chim. Acta 423, 51 (2000).CrossRefGoogle Scholar
  38. 38.
    O. M. Suleimenov, pers. comm.Google Scholar
  39. 39.
    S. J. Hug and B. Sulzberger, Langmuir 10, 3587 (1994).CrossRefGoogle Scholar
  40. 40.
    P. R. Bevington and K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd Ed. (McGraw-Hill, NewYork, 1992) 328 pp.Google Scholar
  41. 41.
    R. M. Lewis and V. Torczon, SIAM J. Opt. 10, 917 (2000).Google Scholar
  42. 42.
    D. W. Marquardt, SIAM J. 11, 431 (1963).Google Scholar
  43. 43.
    The Mathworks, Inc.Google Scholar
  44. 44.
    G. N. Lewis and M. Randall, Thermodynamics (McGraw-Hill, NewYork, 1961), 723 pp.Google Scholar
  45. 45.
    E. A. Guggenheim and R. H. Stokes, Equilibrium Properties of Aqueous Solutions of Strong Electrolytes, (Pergamon, Oxford, 1969), 358 pp.Google Scholar
  46. 46.
    E. L. Shock, Am. J. Sci. 295, 496 (1995).CrossRefGoogle Scholar
  47. 47.
    L. E. Strong, T. G. Copeland, M. Darragh, and C. van Waes, J. Solution Chem. 9, 109 (1980).CrossRefGoogle Scholar
  48. 48.
    L. E. Strong, T. Kinney, and P. Fischer, J. Solution Chem. 8, 329 (1979).CrossRefGoogle Scholar
  49. 49.
    L. E. Strong, D. J. Blubaugh, and C. R. Canalli, J. Solution Chem. 11, 811 (1981).Google Scholar
  50. 50.
    M. D. Liptak and G. C. Shields, Int. J. Quant. Chem. 85, 727 (2001).CrossRefGoogle Scholar
  51. 51.
    I. A. Topol, G. J. Tawa, S. K. Burt, and A. A. Rashin, J. Chem. Phys. 102, 10998 (1999).Google Scholar
  52. 52.
    M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, and T. R. Tuttle, J. Phys. Chem. A 102, 7787 (1998).Google Scholar
  53. 53.
    J. A. Mejías and S Lago, J. Chem. Phys. 113, 7306 (2000).Google Scholar
  54. 54.
    G. A. A. Saracino, R. Improta, and V. Barone, Chem. Phys. Lett. 373, 411 (2003).CrossRefGoogle Scholar
  55. 55.
    A. Klamt, F. Eckert, M. Diedenhofen, and M. E. Beck, J. Phys. Chem. A 107, 9380 (2003).CrossRefGoogle Scholar
  56. 56.
    F. Eckert and A. Klamt, Ind. Eng. Chem. Res. 40, 2371 (2001).CrossRefGoogle Scholar
  57. 57.
    A. Klamt, F. Eckert, and M. Diedenhofen, J. Phys. Chem. A 107, 9380 (2003).CrossRefGoogle Scholar
  58. 58.
    I. A. Koppel, P. Burk, I. Koppel, and I. Leito, J. Am. Chem. Soc. 124, 5594 (2002).CrossRefGoogle Scholar
  59. 59.
    H. Morita, K. Fuke, and S. Nagakura, Bull. Chem. Soc. Jpn. 50, 645 (1977).Google Scholar
  60. 60.
    T. Kobayaski, K. Yokota, and S. S. Nagakura, Bull. Chem. Soc. Jpn. 48, 412 (1975).Google Scholar
  61. 61.
    J. Maillols, L. Bardet, and L. Maury, J. Mol. Struct. 30, 57 (1976).CrossRefGoogle Scholar
  62. 62.
    G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916).Google Scholar
  63. 63.
    G. N. Lewis, J. Am. Chem. Soc. 1, 17 (1933).Google Scholar
  64. 64.
    J.-F. Boily, J. Phys. Chem. A 107, 4276 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Pacific Northwest National Laboratory
  2. 2.Institute for Mineralogy and PetrologySwiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations