Skip to main content
Log in

Ion Association and Hydration in Aqueous Solutions of Nickel(II) and Cobalt(II) Sulfate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aqueous solutions of nickel(II) and cobalt(II) sulfate have been investigated at 25 C by dielectric relaxation spectroscopy (DRS) over a wide range of frequencies (0.2 ≤ ν (GHz) ≤ 89) and salt concentrations (0.025 ≤ c(mol-L−1) ≤ 1.4). The spectra indicate, as for MgSO4(aq) studied previously, the simultaneous presence of double solvent-separated, solvent-shared and contact ion pairs in both NiSO4(aq) and CoSO4(aq). The stepwise formation constants for each ion-pair type and the overall association constant, obtained from the data are in good agreement with ultrasonic relaxation and other estimates. The DR spectra at higher concentrations (c ≥ 0.5 mol-L−1) suggest the existence of a nonlinear triple ion M2SO42+(aq). Consistent with the very strong hydration of the salts, which have ‘effective’ hydration numbers approaching 27 at infinite dilution, there are no significant differences in any of the relaxation or thermodynamic parameters for NiSO4(aq) and CoSO4(aq), except that the triple ion appears to be somewhat more stable for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. I. Whiting and D. Muir, Miner. Process. Extr. Met. Rev. 21, 527 (2000).

    Google Scholar 

  2. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry (Wiley, New York, 6th edn., 1999).

    Google Scholar 

  3. I. D. Zaytsev and G. G. Aseyev, Properties of Aqueous Solutions of Electrolytes (CRC Press, Boca Raton, 1992).

    Google Scholar 

  4. J. Barthel, R. Buchner, P.-N. Eberspächer, M. Münsterer, J. Stauber, and B. Wurm, J. Mol. Liq. 78, 83 (1998).

    Article  Google Scholar 

  5. R. Buchner and J. Barthel, Ann. Rep. Prog. Chem. C 97, 349 (2001).

    Article  Google Scholar 

  6. R. Buchner, Dielectric Spectroscopy of Solutions, in Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations, NATO Science Ser. II: Mathematics, Physics and Chemistry, J. Samios and V. A. Durov, eds., (Kluwer, Dordrecht, 2004), Vol. 133, pp. 265–288.

  7. Bu R. Buchner, T. Chen, and G. T. Hefter, J. Phys. Chem. B 108, 2365 (2004).

    Article  Google Scholar 

  8. R. Pottel, Ber. Bunsen-Ges. Phys. Chem. 69, 363 (1965).

    Google Scholar 

  9. E. Gerdes, W. D. Kraeft, and M. Zecha, Z. Phys. Chem. (Leipzig) 241, 25 (1969).

    Google Scholar 

  10. P. S. Krishna, M. Rao, and D. Premaswarup, Indian J. Pure Appl. Phys. 7, 68 (1969).

    Google Scholar 

  11. E. A. S. Cavell and S. Petrucci, J. Chem. Soc. Faraday Trans. II 74, 1019 (1978).

    Article  Google Scholar 

  12. R. Buchner, G. T. Hefter, and P. M. May, J. Phys. Chem. A 103, 1 (1999).

    Article  Google Scholar 

  13. Ba R. Buchner, S. G. Capewell, G. T. Hefter, and P. M. May, J. Phys. Chem. B 103, 1185 (1999).

    Article  Google Scholar 

  14. J. Barthel, K. Bachhuber, R. Buchner, H. Hetzenauer, and M. Kleebauer, Ber. Bunsenges. Phys. Chem. 95, 853 (1991).

    Google Scholar 

  15. G. Schwarzenbach and H. Flaschka, Complexometric Titrations (Methuen, London, 2nd edn., 1969).

    Google Scholar 

  16. T. Isono, Rikagaka Kenkyusho Hokoku 56, 103 (1980); Chem. Abstr. 95, 87102t (1981).

  17. C. F. J. Böttcher and P. Bordewijk, Theory of Electric Polarization, Vol. 2; (Elsevier: Amsterdam, 2nd edn., 1978).

    Google Scholar 

  18. H. Hölzl, S. Schrödle, J. Barthel, and R. Buchner (preparation).

  19. S. Schrödle, R. Buchner, and W. Kunz, J. Phys. Chem. B 108, 6281 (2004).

    Article  Google Scholar 

  20. G. H. Nancollas, Interactions in Electrolyte Solutions (Elsevier, New York, 1966).

    Google Scholar 

  21. M. Eigen and K. Tamm, Z. Elektrochem. 66, 93 (1962).

    Google Scholar 

  22. M. Eigen and K. Tamm, Z. Elektrochem. 66, 107 (1962).

    Google Scholar 

  23. G. Atkinson and S. Petrucci, J. Phys. Chem. 70, 3122 (1966).

    Google Scholar 

  24. W. W. Rudolph, G. Irmer, and G. T. Hefter, Phys. Chem. Chem. Phys. 5, 5253 (2003).

    Article  Google Scholar 

  25. M. L. Tobe and J. Burgess, Inorganic Reaction Mechanisms (Longman: Harlow, UK, 1999).

    Google Scholar 

  26. F. Malatesta and R. Zamboni, J. Solution Chem. 26, 791 (1997).

    Google Scholar 

  27. S. C. B. Myneni, Rev. Mineral. Geochem. 40, 113 (2000).

    Google Scholar 

  28. T. Chen, Ph. D. Thesis (Murdoch University, 2003).

  29. R. Buchner, J. Barthel, and J. Stauber, Chem. Phys. Lett. 306, 57 (1999).

    Article  Google Scholar 

  30. Y. Marcus, Ion Properties (Dekker, New York, 1997).

    Google Scholar 

  31. W. F. Linke, Solubilities of Inorganic and Metal-Organic Compounds (American Chemical Society, Washington, D.C., 4th edn., 1965).

  32. E. A. S. Cavell, P. C. Knight, and M. A. Sheikh, J. Chem. Soc., Faraday Trans. 67, 2225 (1971).

    Google Scholar 

  33. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Butterworths, London, 2nd edn., 1970).

    Google Scholar 

  34. M. Beşter Rogaç, V. Babiç, T. M. Perger, R. Neueder, and J. Barthel, J. Mol. Liq. 118, 111 (2005).

    Article  Google Scholar 

  35. S. Kratsis, G. T. Hefter, and P. M. May, J. Solution Chem. 30, 19 (2001).

    Article  Google Scholar 

  36. N. Tanaka and H. Ogino, Bull. Chem. Soc. Jpn. 34, 1040 (1961).

    Google Scholar 

  37. N. Tanaka, Y. Saito, and H. Ogino, H., Bull. Chem. Soc. Jpn. 36, 794 (1963).

  38. V. E. Mironov, Yu. A. Makashev, I. Yu. Mavrina, M. M. Kryzhanovskii, Russ. J. Inorg. Chem. 15, 668 (1970).

    Google Scholar 

  39. T. Isono, Rikagaku Kenkyusho 65, 95 (1971); Chem. Abstr. 76, 159151r (1972).

  40. S. G. Capewell, R. Buchner, G. Hefter, and P. M. May, Phys. Chem. Chem. Phys. 1, 1933 (1999).

    Article  Google Scholar 

  41. A. Bechteler, K. G. Breitschwerdt, and K. Tamm, J. Chem. Phys., 52, 2975 (1970).

    Article  Google Scholar 

  42. K. Fritsch, C. J. Montrose, J. L. Hunter, and J. F. Dill, J. Phys. Chem. 52, 2242 (1970).

    Article  Google Scholar 

  43. H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).

    Article  Google Scholar 

  44. B. M. Rode, C. F. Schwenk, and A. Tongraar, J. Mol. Liq. 110, 105 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn Hefter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, T., Hefter, G. & Buchner, R. Ion Association and Hydration in Aqueous Solutions of Nickel(II) and Cobalt(II) Sulfate. J Solution Chem 34, 1045–1066 (2005). https://doi.org/10.1007/s10953-005-6993-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-6993-5

Keywords

Navigation