Skip to main content
Log in

The System HCl + NdCl3 + H2O from 5 to 55 C: A Study of Harned's Rule

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The activity coefficients of HCl (γ A ) in aqueous mixtures of HCl and NdCl3 were determined by the electromotive-force (emf) measurement of cells without liquid junctions of the type:

$${\rm Pt},{\rm H}_{2} ({\rm g},1 {\rm atm})|{\rm HCl}(m_{\rm A}) + {\rm NdCl}_{3} (m_{\rm B}) + {\rm H}_{2} {\rm O}|{\rm AgCl},{\rm Ag}$$
((A))

The experiments were carried out at nine constant total ionic strengths of I = 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, and 2.0 mol-kg−1, and at 11 temperatures from 5 to 55 C, but at I = 2.0 mol-kg−1 the experimental temperatures were 5, 25 and 55 C only. Harned's rule was used to represent all 728 experimental emf data points at the experimental ionic strengths and temperatures. The quadratic terms in the Harned equations for the values of logγ A were required for a good fit to the emf data, indicating the significance of ternary interactions at the experimental ionic strengths. The adjoining paper deals with the application of the Pitzer ion-interaction theory to estimate the Pitzer's mixing parameters for binary and ternary interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Robinson, R. N. Roy, and R. G. Bates, J. Solution Chem. 74, 837 (1974).

    Article  Google Scholar 

  2. R. N. Roy, C. P. Moore, M. N. White, L. N. Roy, K. M. Vogel, D. A. Johnson, and F. J. Millero, J. Phys. Chem. 96, 402 (1992).

    Google Scholar 

  3. R. N. Roy, S. A. Rice, K. M. Vogel, L. N. Roy, and F. J. Millero, J. Phys. Chem. 94, 7706 (1990).

    Article  Google Scholar 

  4. R. N. Roy, J. J. Gibbons, L. K. Ovens, G. A. Bliss, and J. J. Hartley, J. Chem. Soc. Faraday Trans. 1, 78, 1405 (1981).

    Article  Google Scholar 

  5. J. N. Butler and R. N. Roy, Activity Coefficients in Electrolyte Solutions (CRC, Boca Raton, FL, 1991), Chap. 4, p. 155.

    Google Scholar 

  6. R. N. Roy, J. J. Gibbons, J. C. Peiper, and K. S. Pitzer, J. Phys. Chem. 87, 2365 (1983).

    Article  Google Scholar 

  7. H. S. Harned and R. Gary, J. Am. Chem. Soc. 77, 4695 (1955).

    Article  Google Scholar 

  8. L. N. Roy, T. M. Beasley, K. M. Kuhler, J. K. Bice, W. S. Good, R. N. Roy, and K. S. Pitzer, J. Solution Chem. 25, 1241 (1996).

    Article  Google Scholar 

  9. K. S. Pitzer, R. N. Roy, and P. Wang, J. Phys. Chem. 101, 4120 (1997).

    Google Scholar 

  10. H. L. Friedman, Ionic Solution Theory (Wiley Interscience, New York, 1962).

    Google Scholar 

  11. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Article  Google Scholar 

  12. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300 (1973).

    Article  Google Scholar 

  13. K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. 96, 5701 (1974).

    Article  Google Scholar 

  14. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions (CRC, Boca Raton, FL, 1991), Chap. 3, p. 75.

    Google Scholar 

  15. G. Scatchard, J. Am. Chem. Soc. 91, 2410 (1969).

    Article  Google Scholar 

  16. G. Scatchard, R. M. Rush, and J. J. Johnson, J. Phys. Chem. 74, 3786 (1970).

    Article  Google Scholar 

  17. F. J. Millero and D. Schreiber, Am. J. Sci. 282, 1508 (1982).

    Google Scholar 

  18. R. G. Bates, Determination of pH, 2nd edn. (Wiley, New York, 1973), p. 283, 331.

    Google Scholar 

  19. R. G. Bates, NBS Tech. Note (U.S.), No. 271, 18 (1965).

  20. R. Gary, R. G. Bates, and R. A. Robinson, J. Phys. Chem. 68, 1168 (1964).

    Google Scholar 

  21. R. G. Bates, E. A. Guggenheim, H. S. Harned, D. J. G. Ives, G. J. Janz, C. B. Monk, J. E. Prue, R. A. Robinson, R. H. Stokes, and W. F. K. Wynne-Jones, J. Chem. Phys. 25, 361 (1956); 26, 222 (1957).

    Google Scholar 

  22. H. S. Harned and R. A. Robinson, Multicomponent Electrolyte Solutions (Pergamon, Oxford, 1968), p. 60.

    Google Scholar 

  23. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions (Reinhold, New York, 1958), p. 716.

    Google Scholar 

  24. R. N. Roy, L. N. Roy, B. J. Tabor, C. A. Himes, S. J. Richards, M. P. Cummins, E. B. Christiansen, C. N. Roy, V. K. Sharma, and F. J. Millero, J. Solution Chem. 34, 1031 (2005).

    Google Scholar 

  25. R. N. Roy, L. N. Roy, D. R. Gregory, S. A. Kiefer, B. Das, and K. S. Pitzer, J. Solution Chem. 28, 933 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra N. Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, R.N., Roy, L.N., Himes, C.A. et al. The System HCl + NdCl3 + H2O from 5 to 55 C: A Study of Harned's Rule. J Solution Chem 34, 1017–1031 (2005). https://doi.org/10.1007/s10953-005-6991-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-6991-7

Keywords

Navigation