Journal of Solution Chemistry

, Volume 34, Issue 9, pp 993–1007 | Cite as

A XANES and EXAFS Study of Hydration and Ion Pairing in Ambient Aqueous MnBr2 Solutions

  • Yongsheng Chen
  • John L. Fulton
  • Walter Partenheimer
Article

Abstract

Extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies were used to probe the first-shell coordination structure of Mn(II) in aqueous MnBr2 solutions at ambient conditions from very dilute to the near saturation limit. The Mn K-edge EXAFS spectra for 0.05 and 0.2 m solutions showed that there was no Br(−I) in the first shell, and that the Mn(II) was fully hydrated with six water molecules in an octahedral arrangement. In contrast, for 6 m solution, the coordination number of water was reduced to about 5, and an average of about one bromine atom was present in the first shell as a contact ion pair. The 1s → 4p transition at 6545.5 eV confirmed the observation of Mn–Br contact ion pairs at high concentrations and the 1s → 3d transition at 6539.5 eV showed that the first shell coordination symmetry remained octahedral even in the presence of Mn–Br ion pairs.

Keywords

XANES EXAFS manganese bromide aqueous solution hydration structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Anschutz, G. Blanc, and P. Stille, Geochim. Cosmochim. Acta 59, 4799 (1995).CrossRefGoogle Scholar
  2. 2.
    R. A. Hodkinson, P. Stoffers, J. Scholten, D. S. Cronan, G. Jeschke, and T. D. S. Rogers, Geochim. Cosmochim. Acta 58, 5011 (1994).CrossRefGoogle Scholar
  3. 3.
    T. Kuhn, B. C. Bostick, A. Koschinsky, P. Halbach, and S. Fendorf, Chem. Geol. 199, 29 (2003).Google Scholar
  4. 4.
    a) P. A. Hamley, T. Ilkenhans, J. M. Webster, E. Garcia-Verdugo, E. Venardou, M. J. Clarke, R. Auerbach, W. B. Thomas, K. Whiston, and M. Poliakoff, Green Chem. 4, 235 (2002); b) J. B. Dunn, D. I. Urquhart, and P. E. Savage, Adv. Synth. Catal. 344, 385 (2002).Google Scholar
  5. 5.
    E. Garcia-Verdugo, E. Venardou, W. B. Thomas, K. Whiston, W. Partenheimer, P. A. Hamley, and M. Poliakoff, Adv. Synth. Catal. 346, 307 (2004).CrossRefGoogle Scholar
  6. 6.
    G. W. Neilson, J. R. Newsome, and M. Sandstrom, J. Chem. Soc., Faraday Trans. II 77, 1245 (1981).Google Scholar
  7. 7.
    B. Beagley, B. Gahan, G. N. Greaves, and C. A. McAuliffe, J. Chem. Soc., Chem. Commun. 1265 (1983).Google Scholar
  8. 8.
    B. Beagley, B. Gahan, G. N. Greaves, C. A. McAuliffe, and E. W. White, J. Chem. Soc., Chem. Commun. 1804 (1985).Google Scholar
  9. 9.
    B. Beagley, C. A. McAuliffe, S. P. B. Smith, and E. W. White, J. Phys.: Condens. Matter 3, 7919 (1991).CrossRefGoogle Scholar
  10. 10.
    Y. Tajiri, M. Ichihashi, T. Mibuchi, and H. Wakita, Bull. Chem. Soc. Jpn. 59, 1155 (1986).Google Scholar
  11. 11.
    H. Ohtaki and T. Radnai, Chem. Rev. 93, 1157 (1993).CrossRefGoogle Scholar
  12. 12.
    K. Ozutsumi, Y. Abe, R. Takahashi, and S.-I. Ishiguro, J. Phys. Chem. 98, 9894 (1994).CrossRefGoogle Scholar
  13. 13.
    Y. Inada, T. Sugata, K. Ozutsumi, and S. Funahashi, Inorg. Chem. 37, 1886 (1998).CrossRefGoogle Scholar
  14. 14.
    K. Waizumi, T. Kouda, A. Tanio, N. Fukushima, and H. Ohtaki, J. Solution Chem. 28, 84 (1999).CrossRefGoogle Scholar
  15. 15.
    R. A. Mayanovic, S. Jayanetti, A. J. Anderson, W. A. Bassett, and I. M. Chou, J. Chem. Phys. 118, 719 (2003).CrossRefGoogle Scholar
  16. 16.
    L. X. Chen, L. M. Utschig, S. L. Schlesselman, and D. M. Tiede, J. Phys. Chem. B 108, 3912 (2004).CrossRefGoogle Scholar
  17. 17.
    Y. Inada, H. Hayashi, K. Sugimoto, and S. Funahashi, J. Phys. Chem. A 103, 1401 (1999).CrossRefGoogle Scholar
  18. 18.
    P. D'Angelo, V. Barone, G. Chillemi, N. Sanna, W. Meyer-Klaucke, and N. V. Pavel, J. Am. Chem. Soc. 124, 1958 (2002).CrossRefPubMedGoogle Scholar
  19. 19.
    T. Akai, M. Okuda, and M. Nomura, Bull. Chem. Soc. Jpn. 72, 1239 (1999).CrossRefGoogle Scholar
  20. 20.
    R. J. Reeder, G. M. Lamble, and P. A. Northrup, Am. Mineral. 84, 1049 (1999).Google Scholar
  21. 21.
    M. M. Hoffmann, J. G. Darab, B. J. Palmer, and J. L. Fulton, J. Phys. Chem. A 103, 8471 (1999).CrossRefGoogle Scholar
  22. 22.
    S. L. Wallen, B. J. Palmer, and J. L. Fulton, J. Chem. Phys. 108, 4039 (1998).CrossRefGoogle Scholar
  23. 23.
    E. J. Elzinga and R. J. Reeder, Geochim. Cosmochim. Acta 66, 3943 (2002).CrossRefGoogle Scholar
  24. 24.
    A. I. Frenkel and G. V. Korshin, Can. J. Soil Sci. 81, 271 (2001).Google Scholar
  25. 25.
    J. L. Fulton, M. M. Hoffmann, J. G. Darab, B. J. Palmer, and E. A. Stern, J. Phys. Chem. A 104, 11651 (2000).CrossRefGoogle Scholar
  26. 26.
    P. D'Angelo, E. Bottari, M. R. Festa, H. F. Nolting, and N. V. Pavel, J. Chem. Phys. 107, 2807 (1997).CrossRefGoogle Scholar
  27. 27.
    K. Zhang, L. Song, J. Dong, and M. A. ElSayed, Biophys. J. 73, 2097 (1997).PubMedGoogle Scholar
  28. 28.
    J. L. Fulton, M. M. Hoffmann, and J. G. Darab, Chem. Phys. Lett. 330, 300 (2000).CrossRefGoogle Scholar
  29. 29.
    J. L. Fulton, S. M. Heald, Y. S. Badyal, and J. M. Simonson, J. Phys. Chem. A 107, 4688 (2003).CrossRefGoogle Scholar
  30. 30.
    S. M. Heald, in X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, D. C. Koningsberger and R. Prins, eds. (Wiley, New York, 1988), pp. 97–118.Google Scholar
  31. 31.
    B. K. Teo, EXAFS: Basic Principles and Data Analysis, (Springer-Verlag, New York, 1986).Google Scholar
  32. 32.
    E. A. Stern and S. M. Heald, Handbook of Synchrontron Radiation, D. E. Eastman, Y. Farge, and E. E. Koch, eds. (North-Holland: Amsterdam, 1983).Google Scholar
  33. 33.
    E. A. Stern, M. Newville, B. Ravel, Y. Yacoby, and D. Haskel, Physica B 209, 117 (1995).CrossRefGoogle Scholar
  34. 34.
    M. Newville, P. Livins, Y. Yacoby, J. J. Rehr, and E. A. Stern, Phys. Rev. B 47, 14126 (1993).CrossRefGoogle Scholar
  35. 35.
    S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, and M. J. Eller, Phys. Rev. B 52, 2995 (1995).CrossRefGoogle Scholar
  36. 36.
    M. Newville, B. Ravel, D. Haskel, J. J. Rehr, E. A. Stern, and Y. Yacoby, Physica B 209, 154 (1995).CrossRefGoogle Scholar
  37. 37.
    M. Kuriyama and S. Hosoya, Bull. Chem. Soc. Jpn. 17, 1022 (1962).Google Scholar
  38. 38.
    E. F. Bertaut, D. Tran Qui, P. Burlet, P. Burlet, M. Thomas, and J. M. Moreau, Acta Crystallogr., Sect. B 30, 2234 (1974).Google Scholar
  39. 39.
    D. Tranqui, P. Burlet, A. Filhol, and M. Thomas, Acta Crystallogr., Sect. B 33, 1357 (1977).Google Scholar
  40. 40.
    K. Sudarsanan, Acta Crystallogr., Sect. B 31, 2720 (1975).Google Scholar
  41. 41.
    E. D. Crozier, N. Alberding, and B. R. Sundheim, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 39, 808 (1983).Google Scholar
  42. 42.
    M. Schneider, P. Kuske, and H. D. Lutz, Acta Crystallogr., Sect. B: Struct. Sci. 48, 761 (1992).Google Scholar
  43. 43.
    H. Montgomery, R. V. Chastain, and E. C. Lingafelter, Acta Crystallogr. 20, 731 (1966).CrossRefGoogle Scholar
  44. 44.
    A. Zalkin, J. D. Forrester, and D. H. Templeton, Inorg. Chem. 3, 529 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Yongsheng Chen
    • 1
  • John L. Fulton
    • 1
  • Walter Partenheimer
    • 2
  1. 1.Fundamental Science DivisionPacific Northwest National LaboratoryRichland
  2. 2.Central Research and DevelopmentE. I. DuPont de Nemours & Co., Inc.Wilmington

Personalised recommendations