Skip to main content
Log in

Temperature and Concentration Dependence of the Electrical Conductance, Diffusion, and Kinetics Parameters of the Ions in Aqueous Solutions of Sulfuric Acid, Selenic Acid, and Potassium Tellurate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The temperature and concentration dependences of the electrical conductance of aqueous solutions of sulfuric acid, selenic acid, and potassium tellurate were studied. The coefficients of the corresponding empirical equations were determined, and the values of equivalent conductances of the anions were evaluated at infinite dilution at the experimental temperatures. The values of the coefficients in the Fuoss and Onsager equation were evaluated for the three electrolytes at 298 K. The values of the molecular and ionic coefficients of self-diffusion at infinite dilution were calculated in the temperature range 288–318 K. The change of the translational energy Δ Etr. of water molecules in the ionic hydration sphere was determined. The number of water molecules participating in the ionic hydration sphere at 298 K and the changes of Gibbs free energy, enthalpy, and entropy of activation of ionic conductance were calculated. The results obtained were interpreted according to the Samoylov’s theory of positive and negative hydration of ions. The differences observed in the temperature dependences of the mentioned parameters were explained in terms of the different radii and hydration numbers of the ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Robinson and R. H. Stokes, Electrolyte Solutions (Butterworths Science Publications, London, 1959), 2nd ed., Chap. 7, pp. 165–209.

    Google Scholar 

  2. E. Eger and A. J. Salkind, eds., Techniques of Electrochemistry, vol. 2 (Wiley, London, 1973), 1st ed., pp. 10–69.

    Google Scholar 

  3. T. Erdey-Grüz, Transport Phenomena in Aqueous Solutions (Akademia Kiádo, Budapest, 1974).

    Google Scholar 

  4. R. M. Fuoss, J. Am. Chem. Soc. 81, 2659 (1959).

    Article  Google Scholar 

  5. F. Accascina, A. DD’Aprino, and R. M. Fuoss, J. Am. Chem. Soc. 81, 1058 (1959).

    Article  Google Scholar 

  6. R. W. Kunze and R. M. Fuoss, J. Phys. Chem. 67, 911 (1963).

    Google Scholar 

  7. A. DD’Aprino and R. M. Fuoss, J. Phys. Chem. 67, 1704 (1963).

    Google Scholar 

  8. J. F. Skinner and R. M. Fuoss, J. Phys. Chem. 68, 1882 (1964).

    Google Scholar 

  9. R. M. Fuoss, L. Onsager, and J. F. Skinner, J. Phys. Chem. 69, 2581 (1965).

    Google Scholar 

  10. Y. Samoylov, Structure of Aqueous Electrolyte Solutions and the Hydration of Ions (Consultants Bureau, Enterprise Inc., New York, 1965).

    Google Scholar 

  11. L. T. Vlaev and S. D. Genieva, Russ. J. Phys. Chem. 77, 1962 (2003).

    Google Scholar 

  12. M. Nakahara, N. Takisaw, and J. Osugi, J. Phys. Chem. 85, 112 (1981).

    Article  Google Scholar 

  13. B. S. Smolyakov and G. A. Veselova, Elektrokhimia 10, 896 (1974).

    Google Scholar 

  14. L. T. Vlaev and M. P. Tavlieva, Bulg. Chem. Commun. 34, 330 (2002).

    Google Scholar 

  15. D. Dobos, Electrochemical Data (Akademia Kiádo, Budapest, 1980), p. 75.

    Google Scholar 

  16. S. Gleston, K. J. Laider, and H. Eyring, The Theory of Rate Processes (McGraw-Hill, Book Comp. Inc. New York, 1941).

    Google Scholar 

  17. B. S. Smolyakov and G. A. Veselova, Elektrokhimia 11, 700 (1975).

    Google Scholar 

  18. K. N. Surkov and N. N. Kochurova, Zh. Fiz. Khim. 68, 642 (1994).

    Google Scholar 

  19. K. N. Surkov and N. N. Kochurova, Zh. Fiz. Khim. 69, 1584 (1995).

    Google Scholar 

  20. O. Ya. Samoylov, H. Uedayra, and P. S. Yastremskii, Zh. Strukt. Khim. 19, 814 (1978).

    Google Scholar 

  21. M. H. Rodnikova, T. A. Nosova, V. G. Markova, and K. T. Dudnikova, Dokl. RAN. 327, 96 (1992).

    Google Scholar 

  22. M. H. Rodnikova, Zh. Fiz. Khim. 67, 275 (1993).

    Google Scholar 

  23. L. P. Safonova, A. M. Kolker, V. F. Katkov, and G. L. Krestov, Zh. Fiz. Khim. 61, 2929 (1987).

    Google Scholar 

  24. Y. Y. Fialkov, V. Y. Gorbachev, and V. L. Chumak, Zh. Fiz. Khim. 71, 1415 (1997).

    Google Scholar 

  25. D. S. Gill, Electrochim. Acta. 22, 491 (1977).

    Article  Google Scholar 

  26. D. S. Gill, Electrochim. Acta. 24, 701 (1979).

    Article  Google Scholar 

  27. E. R. Nightingale, Jr., J. Phys. Chem. 63, 1381 (1959).

    Article  Google Scholar 

  28. V. A. Shaposhnik, Elektrokhimia 30, 638 (1994).

    Google Scholar 

  29. I. Y. Klugman, Elektrokhimia 33, 1216 (1997).

    Google Scholar 

  30. O. Y. Samoylov and T. A. Nosova, Zh. Strukt. Khim. 6, 798 (1965).

    Google Scholar 

  31. I. I. Burton, Cat. Rev. Sci. Eng. 9, 209 (1974).

    Google Scholar 

  32. L. T. Vlaev and S. D. Genieva, Zh. Strukt. Khim. 45, 855 (2004).

    Google Scholar 

  33. Y. I. Frenkel, Kinetics Theory of Liquids (Nauka, Leningrad, 1975).

    Google Scholar 

  34. S. B. Brummer and G. J. Hills, Trans. Faraday Soc. 57, 1816; 1823 (1961).

    Article  Google Scholar 

  35. A. N. Zhitomirskii and V. N. Eichis, Ukr. Khim. Zh. 41, 237; 346 (1975).

    Google Scholar 

  36. A. N. Zhitomirskii, A. A. Kvitka, Yu. Ya. Fialkov, and V. N. Eichis, Izv.VUZ khim. khim. Tekhnol. 23(9), 1096 (1980).

    Google Scholar 

  37. M. S. Grilikhes, B. K. Filanovskii, and L. S. Maiofis, Zh. Fiz. Khim. 55, 1292 (1981).

    Google Scholar 

  38. Y. Y. Fialkov and A. N. Zhitomirskii, Izv.VUZ Khim. Khim. Tekhnol. 26(9), 1068 (1983).

    Google Scholar 

  39. A. N. Zhitomirskii, Zh. Fiz. Khim. 61, 1748 (1987).

    Google Scholar 

  40. B. P. Artamonov and M. S. Grilikhes, Zh. Fiz. Khim. 44, 306 (1970).

    Google Scholar 

  41. B. P. Artamonov and M. S. Grilikhes, Zh. Ob. Khim. 41, 756 (1971).

    Google Scholar 

  42. A. N. Zhitomirskii and P. M. Stadniichuk, Zh. Fiz. Khim. 48, 2246 (1974).

    Google Scholar 

  43. Y. Y. Fialkov, A. A. Kvitka, and A. N. Zhitomirskii, Dokl. AN UkrSSR, Ser. B (2), 127 (1979).

  44. L. P. Safonova and A. M. Kolker, Uspekhi Khimii 61, 1748 (1992).

    Google Scholar 

  45. L. T. Vlaev and V. G. Georgieva, Russ. J. Electrochem. 40, 674 (2004).

    Article  Google Scholar 

  46. L. T. Vlaev and S. D. Genieva, Russ. J. Phys. Chem. 78, 753 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyubomir Vlaev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlaev, L., Georgieva, V. Temperature and Concentration Dependence of the Electrical Conductance, Diffusion, and Kinetics Parameters of the Ions in Aqueous Solutions of Sulfuric Acid, Selenic Acid, and Potassium Tellurate. J Solution Chem 34, 961–980 (2005). https://doi.org/10.1007/s10953-005-6259-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-6259-2

Keywords

Navigation