Journal of Solution Chemistry

, Volume 34, Issue 4, pp 469–498 | Cite as

Solubility of (UO2)3(PO4)2⋅4H2O in H+-Na+-OH-H2PO4-HPO2−4-PO3−4-H2O and Its Comparison to the Analogous PuO2 +2 System

  • Dhanpat Rai
  • Yuanxian Xia
  • Linfeng Rao
  • Nancy J. Hess
  • Andrew R. Felmy
  • Dean A. Moore
  • David E. McCready


The objectives of this study were to address uncertainties in the solubility product of (UO2)3(PO4)2⋅4H2O(c) and in the phosphate complexes of U(VI), and more importantly to develop needed thermodynamic data for the Pu(VI)-phosphate system in order to ascertain the extent to which U(VI) and Pu(VI) behave in an analogous fashion. Thus studies were conducted on (UO2)3(PO4)2⋅4H2O(c) and (PuO2)3(PO4)2⋅4H2O(am) solubilities for long-equilibration periods (up to 870 days) in a wide range of pH values (2.5 to 10.5) at fixed phosphate concentrations of 0.001 and 0.01 M, and in a range of phosphate concentrations (0.0001–1.0 M) at fixed pH values of about 3.5. A combination of techniques (XRD, DTA/TG, XAS, and thermodynamic analyses) was used to characterize the reaction products. The U(VI)-phosphate data for the most part agree closely with thermodynamic data presented in Guillaumont et al.,(1) although we cannot verify the existence of several U(VI) hydrolyses and phosphate species and we find the reported value for formation constant of UO2PO4 is in error by more than two orders of magnitude. A comprehensive thermodynamic model for (PuO2)3(PO4)2⋅4H2O(am) solubility in the H+-Na+-OH-Cl-H2PO4-HPO2−4-PO3−4-H2O system, previously unavailable, is presented and the data shows that the U(VI)-phosphate system is an excellent analog for the Pu(VI)-phosphate system.

Key Words

Thermodynamic data solubility product (PuO2)3(PO4)2⋅4H2O(am) (UO2)3(PO4)2⋅4H2O(c) U(VI) phosphate complexes Pu(VI) phosphate complexes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Guillaumont, T. Fanghanel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer, and M. H. Rand, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technitium. Chemical Thermodynamics, Vol. 5. (Elsevier, Amsterdam, 2003).Google Scholar
  2. 2.
    I. Grenthe, J. Fuger, R. J. M. Konings, R. Lemire, A. B. Muller, C. Nguyen-Trung, and H. Wanner, Chemical Thermodynamics of Uranium. Thermodynamics, Vol. 1. (Elsevier Science Publishers, Amsterdam, North-Holland, 1992).Google Scholar
  3. 3.
    R. J. Lemire, J. Fuger, H. Nitsche, P. Potter, M. H. Rand, J. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge, and H. Wanner, Chemical Thermodynamics of Neptunium and Plutonium. Chemical Thermodynamics, Vol. 4. (Elsevier, Amsterdam, 2001).Google Scholar
  4. 4.
    J. M. Schreyer and C. F. Baes, J. Am. Chem. Soc. 76, 345–357 (1954).CrossRefGoogle Scholar
  5. 5.
    V. I. Karpov, Russ. J. Inorg. Chem. 6, 271–272 (1961).Google Scholar
  6. 6.
    V. Vesely, V. Pekarek, and M. Abbrent, J. Inorg. Nucl. Chem. 27, 1159–1166 (1965).CrossRefGoogle Scholar
  7. 7.
    D. Langmuir, Geochim. Cosmochim. Acta 42, 547–569 (1978).CrossRefGoogle Scholar
  8. 8.
    V. S. Tripathi, Uranium(VI) Transport Modeling: Geochemical Data and Submodels. PhD Thesis (Stanford University, Palo Alto, California, 1984).Google Scholar
  9. 9.
    A. Sandino, Processes Affecting the Mobility of Uranium in Natural Waters. PhD Thesis (The Royal Institute of Technology, Stockholm, Sweden, 1991).Google Scholar
  10. 10.
    A. Sandino and J. Bruno, Geochim. Cosmochim. Acta 56, 4135–4145 (1992).Google Scholar
  11. 11.
    R. G. Denotkina, V. B. Shevchenko, and A. I. Moskvin, Russ. J. Inorg. Chem. 10, 1333–1335 (1965).Google Scholar
  12. 12.
    R. G. Denotkina and V. B. Shevchenko, Russ. J. Inorg. Chem. 12, 1237–1239 (1967).Google Scholar
  13. 13.
    A. I. Moskvin, Sov. Radiochem. 11, 447–449 (1969).Google Scholar
  14. 14.
    H. T. Weger, S. Okajima, J. C. Cunnane, and D. T. Reed, Mat. Res. Soc. Symp. Proc. 294, 739–745 (1993).Google Scholar
  15. 15.
    J. M. Cleveland, The Chemistry of Plutonium, Vol. (Gordon and Breach Science Publishers, New York, 1970).Google Scholar
  16. 16.
    D. Rai and J. L. Ryan, Radiochim. Acta 30, 213–216 (1982).Google Scholar
  17. 17.
    JCPDS, Powder Diffraction File. Alphabetical Index, Inorganic Phases, Vol. Diffraction Data Card No. 13–39. (1981).Google Scholar
  18. 18.
    A. R. Felmy, GMIN: A Computerized Chemical Equilibrium Model Using a Constrained Minimization of the Gibbs Free Energy. PNL-7281 (Pacific Northwest National Laboratory, Richland, WA, 1990).Google Scholar
  19. 19.
    D. Rai, Radiochim. Acta 35, 97–108 (1984).Google Scholar
  20. 20.
    W. H. McMaster, N. K. Del Grande, J. H. Mallet, and J. H. Hubbel, Compilation of X-ray Cross Sections. UCRL-50174, (University of California, Livermore State, 1969).Google Scholar
  21. 21.
    S. I. Zabinsky, J. J. Rehr, A. Ankudinov, A. C. Albers, and M. J. Iler, Phys. Rev. B 52, 2995 (1995).Google Scholar
  22. 22.
    K. S. Pitzer, J. Phys. Chem. 77, 268–277 (1973).Google Scholar
  23. 23.
    K. S. Pitzer, Ion Interaction Approach: Theory and Data Correlation. Chapter 3, Activity Coefficients in Electrolyte Solutions, Vol. (CRC Press, Boca Ratan, Florida, 1991).Google Scholar
  24. 24.
    A. R. Felmy, D. Rai, J. A. Schramke, and J. L. Ryan, Radiochim. Acta 48, 29–35 (1989).Google Scholar
  25. 25.
    S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Thermodynamic Analysis of Aqueous Solutions Using INSIGHT. PNWD-SA-4436, (Pacific Northwest National Laboratory, Richland, Washington, 1997).Google Scholar
  26. 26.
    D. Rai, A. R. Felmy, N. J. Hess, V. L. LeGore, and D. E. McCready, Radiochim. Acta 90, 495–503 (2002).Google Scholar
  27. 27.
    A. J. Locock and P. C. Burns, J. Solid State Chem. 163, 275–280 (2002).Google Scholar
  28. 28.
    C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984).Google Scholar
  29. 29.
    K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300–2308 (1973).Google Scholar
  30. 30.
    K. S. Pitzer and L. F. Silvester, J. Solution Chem. 5, 269 (1976).Google Scholar
  31. 31.
    V. Neck, T. Fanghanel, G. Rudolph, and J. I. Kim, Radiochim. Acta 69, 39- (1995).Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Dhanpat Rai
    • 1
  • Yuanxian Xia
    • 1
  • Linfeng Rao
    • 2
  • Nancy J. Hess
    • 1
  • Andrew R. Felmy
    • 1
  • Dean A. Moore
    • 1
  • David E. McCready
    • 1
  1. 1.Pacific Northwest National LaboratoryRichland
  2. 2.Lawrence Berkeley National LaboratoryBerkeley

Personalised recommendations