Skip to main content
Log in

Thermodynamic Aspects of Metal–Ion Complexation in the Structured Solvent, N-Methylformamide

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Chloride complexation of cobalt(II), nickel(II) and zinc(II) ions has been studied by calorimetry and spectrophotometry in N-methylformamide (NMF) containing 1.0 mol-dm− 3 (n-C4H9)4NClO4 as an ionic medium at 298 K. A series of mononuclear complexes, MCl n (2 -n) + (M=Co, Ni and Zn) with n = 1, 3 and 4 for cobalt(II), n = 1 for nickel(II), and n = 1–4 for zinc(II), are formed and their formation constants, enthalpies and entropies were obtained. It revealed that complexation is suppressed significantly in NMF relative to that in N,N-dimethylformamide (DMF) in all metal systems examined. The suppressed complexation in NMF is mainly ascribed to the smaller formation entropies in NMF reflecting that the solvent–solvent interaction or solvent structure in the bulk NMF is much stronger than that in the bulk DMF. Formation entropies, Δ S1o, of the monochloro complex in DMF, dimethyl sulfoxide and NMF are well correlated with the Marcus’ solvent parameter, Δ Δv So/R, according to Δ S1o/R = aΔ Δv So/R+b. The a value is negative and similar in all metal systems examined, whereas the b value depends on the metal system. When a gaseous ion is introduced into a solvent, the ionic process of solvation is divided into two stages: the ion destroys the bulk solvent structure to isolate solvent molecules at the first stage and the ion then coordinates a part of isolated solvent molecules around it at the second stage. We propose that the a and b values may reflect the changes in the freedom of motion of solvent molecules at the first and second stages, respectively, of the ionic process of solvation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Burger, Solvation, Ionic, and Complex Formation Reactions in Non-Aqueous Solvents: Experimental Methods for Their Investigation (Elseviour Science, Amsterdom, 1983).

    Google Scholar 

  2. J. Burgess, Ions in Solution 2nd Ed. (Horwood, Chichester, UK, 1999).

    Google Scholar 

  3. G. Mamantov and A. I. Popov, Chemistry of Nonaqueous Solutions (VCH, New York, 1994).

    Google Scholar 

  4. a) V. Gutmann and E. Wychera, Inorg. Nucl. Chem. Lett. 2, 257 (1966); b) V. Gutmann, Coordination Chemistry in Nonaqueous Solutions (Springer-Verlag, New York, 1968).

  5. U. Mayer, V. Gutmann, and W. Gerger, Mh. Chem. 106, 1235 (1975).

    Google Scholar 

  6. S. Ishiguro, H. Suzuki, B. G. Jeliazkova, and H. Ohtaki, Bull. Chem. Soc. Jpn. 59, 2407 (1986).

    Google Scholar 

  7. H. Suzuki and S. Ishiguro, J. Chem. Soc. Faraday Trans. 86, 2179 (1990).

    Article  Google Scholar 

  8. S. Ishiguro, B. G. Jeliazkova, and H. Ohtaki, Bull. Chem. Soc. Jpn. 58, 1143 (1985).

    Google Scholar 

  9. S. Ishiguro, K. Ozutumi, and H. Ohtaki, Bull. Chem. Soc. Jpn. 60, 531 (1987).

    Google Scholar 

  10. S. Ishiguro, K. Ozutumi, and H. Ohtaki, J. Chem. Soc. Faraday Trans. 184, 2409 (1988).

    Google Scholar 

  11. R. L. Amey, J. Phys. Chem. 72, 3358 (1968).

    Article  Google Scholar 

  12. H. H. Szmant, in Dimethyl Sulfoxide, S. W. Jacob, E. E. Rosenbaum, and C. D. Wood, ed. (Marcel Dekker, New York, 1971).

    Google Scholar 

  13. M. Sandström, Acta Chem. Scand. A32, 5 (1978).

    Google Scholar 

  14. S. Itoh and H. Ohtaki, Z. Naturforsch. 42a, 858 (1987).

    Google Scholar 

  15. H. Bertagnolli, E. Schultz, and P. Chieux, Ber. Bunsenges. Phys. Chem. 93, 88 (1989).

    Google Scholar 

  16. D. F. Mierke and H. Kessler, J. Am. Chem. Soc. 113, 9466 (1991).

    Article  Google Scholar 

  17. I. Vaisman and M. L. Berkowitz, J. Am. Chem. Soc. 114, 7889 (1992).

    Article  Google Scholar 

  18. A. Luzar, A. K. Soper, and D. Chandler, J. Chem. Phys. 99, 6836 (1993).

    Article  Google Scholar 

  19. M. Rabinowitz and A. Pines, J. Am. Chem. Soc. 91, 1585 (1969).

    Article  Google Scholar 

  20. H. Ohtaki, S. Itoh, T. Yamaguchi, S. Ishiguro, and B. M. Rode, Bull. Chem. Soc. Jpn. 56, 3406 (1983).

    Google Scholar 

  21. T. Radnai, S. Itoh, and H. Ohtaki, Bull. Chem. Soc. Jpn. 61, 3845 (1988).

    Google Scholar 

  22. R. Konrat and H. Sterk, J. Phys. Chem. 94, 1291 (1990).

    Article  Google Scholar 

  23. Y. P. Puhovski and B. M. Rode, Chem. Phys. 190, 61 (1995).

    Article  Google Scholar 

  24. S. E. M. Colaianni and O. Faurskov Nielsen, J. Mol. Struct. 347, 267 (1995).

    Article  Google Scholar 

  25. H. Borrmann, I. Persson, M. Sandstrom, and C. M. V. Stalhandske, J. Chem. Soc., Perkin Trans. 2, 393 (2000).

    Google Scholar 

  26. Y. P. Puhovski, L. P. Safonova, and B. M. Rode, J. Mol. Liq. 103–104, 15 (2003).

    Article  Google Scholar 

  27. Z. Libus and H. Tialowska, J. Solution Chem. 4, 1011 (1975).

    Article  Google Scholar 

  28. H. Doe and T. Kitagawa, Inorg. Chem. 21, 2272 (1982).

    Article  Google Scholar 

  29. C. M. Cries, R. P. Hero, and E. Luksha, J. Phys. Chem. 72, 2970 (1968).

    Article  Google Scholar 

  30. C. M. Criss, J. Phys. Chem. 78, 1000 (1974).

    Article  Google Scholar 

  31. H. Ohtaki, J. Solution Chem. 21, 39 (1992).

    Article  Google Scholar 

  32. Y. Marcus, J. Solution Chem. 25, 455 (1996).

    Article  Google Scholar 

  33. Y. Marcus, The Properties of Solvents (Wiley, New York, 1998).

    Google Scholar 

  34. H. Ohtaki, S. Itoh, and B. M. Rode, Bull. Chem. Soc. Jpn. 59, 271 (1986).

    Google Scholar 

  35. O. Faurskov Nielsen, D. H. Christensen, and O. Have Rasmussen, J. Mol. Struct. 242, 273 (1991).

    Article  Google Scholar 

  36. J. Neuefeind, P. Chieux, and M. D. Zeidler, Mol. Phys. 76, 143 (1992).

    Google Scholar 

  37. J. Neuefeind, M. D. Zeidler, and H. F. Poulsen, Mol. Phys. 87, 189 (1996).

    Article  Google Scholar 

  38. F. Hammami, M. Bahri, S. Nasr, N. Jaidane, M. Oummezzine, and R. Cortes, J. Chem. Phys. 119, 4419 (2003).

    Article  Google Scholar 

  39. F. Hammami, S. Nasr, M. Oummezzine, and R. Cortes, Biomol. Eng. 19, 201 (2002).

    Article  PubMed  Google Scholar 

  40. P. Bour, C. N. Tam, J. Sopkova, and F. R. Trouw, J. Chem. Phys. 108, 351 (1998).

    Article  Google Scholar 

  41. R. Ludwig, F. Weinhold, and T. C. Farrar, J. Chem. Phys. 107, 499 (1997).

    Article  Google Scholar 

  42. H. Torii, T. Tatsumi, T. Kanazawa, and M. Tasumi, J. Phys. Chem. B 102, 309 (1998).

    Article  Google Scholar 

  43. H. Torii and M. Tatsumi, J. Phys. Chem. B 102, 315 (1998).

    Article  Google Scholar 

  44. H. Trii and M. Tatsumi, Int. J. Quant. Chem. 70, 241 (1998).

    Article  Google Scholar 

  45. H. Torii and M. Tatsumi, J. Phys. Chem. A 104, 4174 (2000).

    Article  Google Scholar 

  46. Y. G. Bushuev and S. V. Davletbaeva, Russ. Chem. Bull. 49, 238 (2000).

    Google Scholar 

  47. J. Barthel, R. Buchner, and B. Wurm, J. Mol. Liq. 9899, 51 (2002).

    Article  Google Scholar 

  48. F. Hammami, S. Nasr, M. Oumezzine, and R. Cortes, Biomol. Eng. 19, 201 (2002).

    Article  PubMed  Google Scholar 

  49. H. Ferid, B. Mohamed, N. Salah, J. Nejmeddine, O. Mohamed, and C. Robert, J. Chem. Phys. 119, 4419 (2003).

    Article  Google Scholar 

  50. S. Ishiguro, K. Yamamoto, and H. Ohtaki, Anal. Sci. 1, 263 (1985).

    Google Scholar 

  51. S. Ishiguro and H. Ohtaki, Coord. Chem. Rev. 15, 237 (1987).

    Google Scholar 

  52. H. Suzuki and S. Ishiguro, Netsu Sokutei 15, 152 (1988).

    Google Scholar 

  53. H. Suzuki, Doctor Thesis (Tokyo Institute of Technology, Tokyo, Japan, 1989).

  54. S. Ishiguro, Bull. Chem. Soc. Jpn. 70, 1465 (1997).

    Google Scholar 

  55. M. Mecik and A. Chudziak, J. Solution Chem. 14, 653 (1985).

    Article  Google Scholar 

  56. Y. Marcus, Pure Appl. Chem. 57, 1103 (1985).

    Google Scholar 

  57. M. Koide and S. Ishiguro, J. Solution Chem. 24, 511 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Ishiguro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujii, K., Umebayashi, Y., Kanzaki, R. et al. Thermodynamic Aspects of Metal–Ion Complexation in the Structured Solvent, N-Methylformamide. J Solution Chem 34, 739–753 (2005). https://doi.org/10.1007/s10953-005-5114-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-5114-9

Keywords

Navigation