Skip to main content
Log in

Thermodynamic Properties of Peptide Solutions. Part 17. Partial Molar Volumes and Heat Capacities of the Tripeptides GlyAspGly and GlyGluGly, and Their Salts K[GlyAspGly] and Na[GlyGluGly] in Aqueous Solution at 25 °C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The partial molar volumes, Vo2, and partial molar heat capacities, Cp,2o, at infinite dilution have been determined for the two tripeptides glycylaspartylglycine (glyaspgly) and glycylglutamylglycine (glyglugly), and also for their salts K[glyaspgly] and Na[glyglugly], in aqueous solution at 25 °C. The ionization constants at 25 °C for the aspartyl and glutamyl side-chains have also been determined. These new thermodynamic results have been combined with literature data for electrolytes to obtain the volume and heat capacity changes upon ionization of the acidic side-chains of the peptides. The results are compared with those for other carboxylic acid systems. The partial molar heat capacities and volumes have also been used to calculate the contributions of the acidic amino acid side-chains to the thermodynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Reading and G. R. Hedwig, J. Chem. Soc. Faraday Trans. 86, 3117 (1990).

    Article  Google Scholar 

  2. G. R. Hedwig, J. Chem. Soc. Faraday Trans. 89, 2761 (1993).

    Article  Google Scholar 

  3. M. A. Schwitzer and G. R. Hedwig, J. Chem. Eng. Data 43, 477 (1998).

    Article  Google Scholar 

  4. G. R. Hedwig and H.-J. Hinz, Biophys. Chem. 100, 239 (2003).

    Article  PubMed  Google Scholar 

  5. M. Häckel, H.-J. Hinz, and G. R. Hedwig, J. Mol. Biol. 291, 197 (1999).

    Article  PubMed  Google Scholar 

  6. M. Häckel, H.-J. Hinz, and G. R. Hedwig, Biophys. Chem. 82, 35 (1999).

    Article  Google Scholar 

  7. M. K. Kumaran, I. D. Watson, and G. R. Hedwig, Aust. J. Chem. 36, 1813 (1983).

    Google Scholar 

  8. I. M. Kolthoff and V. A. Stenger, Volumetric Analysis (Wiley Interscience, New York, 1947), Vol. 2, p. 158.

    Google Scholar 

  9. C. J. Downes and G. R. Hedwig, Biophys. Chem. 55, 279 (1995).

    Article  Google Scholar 

  10. G. R. Hedwig, J. Solution Chem. 17, 383 (1988).

    Article  Google Scholar 

  11. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  12. G. R. Hedwig, J. R. Liddle, and R. D. Reeves, Aust. J. Chem. 33, 1685 (1980).

    Google Scholar 

  13. G. R. Hedwig and H. K. J. Powell, Anal. Chem. 43, 1206 (1971).

    Article  Google Scholar 

  14. M. A. Schwitzer, MSc Thesis, Massey University, Palmerston North, New Zealand, 1995.

  15. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, 2nd edn. (Reinhold, New York, 1950), p. 578.

    Google Scholar 

  16. A. E. Martell and L. G. Sillen, Stability Constants of Metal-Ion Complexes (Chemical Society), London, 1964 and 1971) Special Publication Nos. 17 and 25.

    Google Scholar 

  17. D. D. Perrin, Stability Constants of Metal-Ion Complexes, Part B Organic Ligands, IUPAC Chemical Data Ser. No. 22 (Pergamon, New York, 1979).

    Google Scholar 

  18. A. P. Brunetti, M. C. Lim, and G. H. Nancollas, J. Am. Chem. Soc. 90, 5120 (1968).

    Article  PubMed  Google Scholar 

  19. M. K. Kim and A. E. Martell, J. Am. Chem. Soc. 88, 914 (1966).

    Article  PubMed  Google Scholar 

  20. H. Hauer, E. J. Billo, and D. W. Margerum, J. Am. Chem. Soc. 93, 4173 (1971).

    Article  PubMed  Google Scholar 

  21. O. Yamauchi, Y. Nakao, and A. Nakahara, Bull. Chem. Soc. Jpn. 46, 2119 (1973).

    Google Scholar 

  22. F. Rodante, G. Marrosu, and F. Fantauzzi, Thermochim. Acta 141, 297 (1989).

    Article  Google Scholar 

  23. R. M. Izatt and J. J. Christensen, in Handbook of Biochemistry and Molecular Biology, 3rd edn., Physical and Chemical Data, Vol. 1, G. D. Fasman, ed. (CRC Boca Raton, FL, 1976).

  24. G. S. Kell, J. Chem. Eng. Data 12, 66 (1967).

    Article  Google Scholar 

  25. K. Ballerat-Busserolles, T. D. Ford, T. G. Call, and E. M. Woolley, J. Chem. Thermodyn. 31, 741 (1999).

    Article  Google Scholar 

  26. D. G. Archer and P. Wang, J. Phys. Chem. Ref. Data 19, 371 (1990).

    Google Scholar 

  27. G. C. Allred and E. M. Woolley, J. Chem. Thermodyn. 13, 155 (1981).

    Google Scholar 

  28. J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers, J. Solution Chem. 3, 323 (1974).

    Article  Google Scholar 

  29. F. J. Millero, G. K. Ward, and P. V. Chetirkin, J. Acoust. Soc. Am. 61, 1492 (1977).

    Google Scholar 

  30. R. Pogue and G. Atkinson, J. Chem. Eng. Data 33, 495 (1988).

    Article  Google Scholar 

  31. F. J. Millero, E. V. Hoff, and L. Khan, J. Solution Chem. 1, 309 (1972).

    Article  Google Scholar 

  32. C. W. Davies, J. Chem. Soc., 2093 (1938).

  33. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd edn. (Butterworths, London, 1959), p. 232.

    Google Scholar 

  34. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolyte Solutions, 2nd edn. (Reinhold, New York, 1950), p. 523.

    Google Scholar 

  35. M. Häckel, H.-J. Hinz, and G. R. Hedwig, Thermochim. Acta 308, 23 (1998).

    Article  Google Scholar 

  36. H.-J. Hinz, T. Vogl, and R. Meyer, Biophys. Chem. 52, 275 (1994).

    Article  PubMed  Google Scholar 

  37. H. F. Stimson, Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  38. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Article  Google Scholar 

  39. P. P. Singh, E. M. Woolley, K. G. McCurdy, and L. G. Hepler, Can. J. Chem. 54, 3315 (1976).

    Google Scholar 

  40. I. V. Olofsson, J. Chem. Thermodyn. 11, 1005 (1979).

    Article  Google Scholar 

  41. G. C. Allred and E. M. Woolley, J. Chem. Thermodyn. 13, 147 (1981).

    Google Scholar 

  42. P. R. Tremaine, K. Sway, and J. A. Barbero, J. Solution Chem. 15, 1 (1986).

    Article  Google Scholar 

  43. B. A. Patterson, T. G. Call, J. J. Jardine, M. L. Origlia-Luster, and E. M. Woolley, J. Chem. Thermodyn. 33, 1237 (2001).

    Article  Google Scholar 

  44. A. W. Hakin, M. M. Duke, S. A. Klassen, R. M. McKay, and K. E. Preuss, Can. J. Chem. 72, 362 (1994).

    Google Scholar 

  45. A. W. Hakin, M. M. Duke, J. L. Marty, and K. E. Preuss, J. Chem. Soc. Faraday Trans. 90, 2027 (1994).

    Article  Google Scholar 

  46. A. W. Hakin and G. R. Hedwig, J. Chem. Thermodyn. 33, 1709 (2001).

    Article  Google Scholar 

  47. M. Häckel, H.-J. Hinz, and G. R. Hedwig, Phys. Chem. Chem. Phys. 2, 5463 (2000).

    Article  Google Scholar 

  48. H. Høiland, in Thermodynamic Data for Biochemistry and Biotechnology, H.-J. Hinz, ed., Chap. 2 (Springer-Verlag, Berlin, 1986).

  49. L. Lepori and P. Gianni, J. Solution Chem. 29, 405 (2000).

    Article  Google Scholar 

  50. A. W. Hakin and G. R. Hedwig, Phys. Chem. Chem. Phys. 2, 1795 (2000).

    Article  Google Scholar 

  51. G. R. Hedwig and A. W. Hakin, Phys. Chem. Chem. Phys. 6, 4690 (2004).

    Article  Google Scholar 

  52. R. Zana, J. Phys. Chem. 81, 1817 (1977).

    Article  Google Scholar 

  53. A. W. Hakin and G. R. Hedwig, Biophys. Chem. 89, 253 (2001).

    Article  PubMed  Google Scholar 

  54. G. I. Makhatadze and P. L. Privalov, J. Mol. Biol. 213, 375 (1990).

    PubMed  Google Scholar 

  55. Y. Yaruda, N. Tochio, M. Sakurai, and K. Nitta, J. Chem. Eng. Data 43, 205 (1998).

    Article  Google Scholar 

  56. B. Riedl and C. Jolicoeur, J. Phys. Chem. 88, 3348 (1984).

    Article  Google Scholar 

  57. E. J. King, J. Phys. Chem. 73, 1220 (1969).

    Article  Google Scholar 

  58. G. Olofsson, J. Chem. Thermodyn. 16, 39 (1984).

    Article  Google Scholar 

  59. B. R. McRae, B. A. Patterson, M. L. Origlia-Luster, E. C. Sorenson, and E. M. Woolley, J. Chem. Thermodyn. 35, 301 (2003).

    Article  Google Scholar 

  60. N. Taulier and T. V. Chalikian, Biophys. Chem. 104, 21 (2003).

    Article  PubMed  Google Scholar 

  61. E. J. King and G. W. King, J. Am. Chem. Soc. 78, 1089 (1956).

    Article  Google Scholar 

  62. M. A. Schwitzer and G. R. Hedwig, J. Solution Chem. 34 (7) p. 803 (2005).

    Google Scholar 

  63. A. K. Mishra and J. C. Ahluwalia, J. Phys. Chem. 88, 86 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin R. Hedwig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwitzer, M.A., Hedwig, G.R. Thermodynamic Properties of Peptide Solutions. Part 17. Partial Molar Volumes and Heat Capacities of the Tripeptides GlyAspGly and GlyGluGly, and Their Salts K[GlyAspGly] and Na[GlyGluGly] in Aqueous Solution at 25 °C. J Solution Chem 34, 801–821 (2005). https://doi.org/10.1007/s10953-005-4988-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-4988-x

Keywords

Navigation