Skip to main content
Log in

Ionic Interactions of Calcium Sulfate Dihydrate in Aqueous Sodium Chloride Solutions: Solubilities, Densities, Viscosities, Electrical Conductivities, and Surface Tensions at 35 C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic, volumetric, transport, and surface properties, solubilities, densities, viscosities, electrical conductivities, and surface tensions of calcium sulfate dihydrate in aqueous sodium chloride solutions have been measured at 35 C, with a view to determine the ionic interactions that occur in these solutions. The experimental density values have been used to calculate the mean apparent molar volumes of the ternary mixtures. Viscosity values have been analyzed using different empirical equations and the experimental values of the viscosity were combined with conductivity to yield the Walden product. Molar surface energies have been computed using experimental surface tension data. The experimental data have been fitted to polynomial equations by a least-squares analysis to obtain the coefficients and their standard errors. Results have been examined in the light of “structure making” or “structure breaking” effects of the various ions present in the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kumar, V. P. Mohandas, V. R. K. S. Susarla, and P. K. Ghosh, J. Solution Chem. 33, 991 (2004).

    Google Scholar 

  2. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd Edn. (Butterworths, London, 1970).

    Google Scholar 

  3. H. D. B. Jenkins and Y. Marcus, Chem. Rev. 95, 2695 (1995).

    Article  CAS  Google Scholar 

  4. F. K. Cameron and A. Seidell, J. Phys. Chem. 5, 643 (1901).

    Article  CAS  Google Scholar 

  5. E. Bock, Can. J. Chem. 39, 1746 (1961).

    CAS  Google Scholar 

  6. W. L. Marshall and R. Slusher, J. Phys. Chem. 70, 4015 (1966).

    CAS  Google Scholar 

  7. V. R. K. S. Susarla and J. R. Sanghavi, Salt Res. & Ind. 15, 1 (1979).

    Google Scholar 

  8. H. Bettin and F. Spieweck, PTB-Mitt. 100, 195 (1990).

    Google Scholar 

  9. J. A. Riddick, W. B. Bunger, and T. K. Sakano, Organic solvents, in Techniques of Chemistry, 4th Edn. (John Wiley, New York, 1966), Vol II.

    Google Scholar 

  10. IUPAC. Commission on Atomic Weights and Isotopic Abundance 1985, Pure Appl. Chem. 73, 667 (2001).

    Google Scholar 

  11. A. L. Surdo, E. M. Alzola, and F. J. Millero, J. Chem. Thermodyn. 14, 649 (1982).

    Article  Google Scholar 

  12. A. Pal and Y. P. Singh, J. Chem. Eng. Data 41, 425 (1996).

    Article  CAS  Google Scholar 

  13. A. Kumar, V. P. Mohandas, and P. K. Ghosh, J. Chem. Eng. Data 48, 1318 (2003).

    Article  CAS  Google Scholar 

  14. G. Jones and M. Dole, J. Am. Chem. Soc. 51, 2950 (1929).

    Article  CAS  Google Scholar 

  15. R. H. Stokes and R. Mills, Viscosity of Electrolytes and Related Properties (Pergamon Press, 1965), Chap. 4.

  16. U. G. K. Raju, B. Sethuram, and T. N. Rao, Bull. Chem. Soc. Jpn. 55, 293 (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Mohandas, V.P., Sanghavi, R. et al. Ionic Interactions of Calcium Sulfate Dihydrate in Aqueous Sodium Chloride Solutions: Solubilities, Densities, Viscosities, Electrical Conductivities, and Surface Tensions at 35 C. J Solution Chem 34, 333–342 (2005). https://doi.org/10.1007/s10953-005-3053-0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-3053-0

Keywords

Navigation