Skip to main content

Advertisement

Log in

BET Modeling of Solid–Liquid Phase Diagrams of Common-Ion Binary Salt Hydrate Mixtures. II. Calculation of Liquidus Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The BET method, according to which a molten salt hydrate is considered as if the water is “adsorbed” on “sites” of the salt, was used to model the liquidus temperatures of binary mixtures of common-ion salt hydrates. The method requires as input the BET parameters r, the number of sites and ε, the energy of adsorption in excess of that of the condensation of water vapor, as derived in the preceding paper. Further needed input information is the melting temperature of the salt that crystallizes out and its latent heat of melting. It is possible to model the liquidus temperature of the branch of the phase diagram between the pure salt that crystallizes out and the (first) eutectic encountered in the system with this input. The method was applied successfully to binary salt hydrate systems involving magnesium nitrate with magnesium acetate and with aluminum or nickel nitrates, magnesium and nickel chlorides, and calcium chloride with its bromide and nitrate, and with magnesium nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Mokhosoev and T. T. Got’manova, Russ. J. Inorg. Chem. 11, 466 (1966).

    Google Scholar 

  2. H. Kimura and J. Kai, Energy Conv. Mgmt. 28, 197 (1988).

    Article  CAS  Google Scholar 

  3. Y. Marcus, V. Dangor, and S. Lessery, Thermochim. Acta 77, 216 (1984).

    Article  Google Scholar 

  4. Y. Marcus, A. Minevich, and L. Ben-Dor, Thermochim. Acta 412, 163 (2004).

    Article  CAS  Google Scholar 

  5. Y. Marcus, A. Minevich, and L. Ben-Dor, J. Therm. Anal. Calorim, (2005), in press.

  6. Y. Marcus, A. Minevich, and L. Ben-Dor, Thermochim. Acta, (2005), revision submitted.

  7. Y. Marcus, J. Solution Chem. 34, 265 (2005).

    Google Scholar 

  8. M. R. Ally and J. Braunstein, Fluid Phase Equilib. 87, 213 (1993); M. R. Ally, and J. Braunstein, J. Chem. Thermodyn. 30, 49 (1998).

    Google Scholar 

  9. W. Voigt, Monatsh. Chem. 124, 839 (1993).

    Article  CAS  Google Scholar 

  10. D. Zeng, Ph.D. Thesis, Technical University Freiberg, 2003.

  11. Y. Marcus, A. Minevich, and L. Ben-Dor, J. Chem. Thermodyn. 35, 1009 (2003).

    Article  CAS  Google Scholar 

  12. J. Guion, D. D. Sauzade, and M. Laügt, Thermochim. Acta 67, 167 (1983).

    Article  CAS  Google Scholar 

  13. K. K. Meisingset and F. Gronwald, J. Chem. Thermodyn. 16, 523 (1984).

    Article  CAS  Google Scholar 

  14. M. Gaune-Escard, J.-C. Mathieu, P. Desrè, and Y. Doucet, J. Chim. Phys. 1390, 1397 (1972); 1666 (1973).

    Google Scholar 

  15. M. Blander and J. Braunstein, Ann. N. Y. Acad. Sci. 1960, 838.

  16. M. Saboungi, C. Vallet, and Y. Doucet, J. Phys. Chem. 77, 1699 (1973).

    Article  CAS  Google Scholar 

  17. J. E. Ricci, in Molten Salt Chemistry, M. Blander, ed. (Wiley/Interscience, New York, 1964), p. 255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Marcus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, Y. BET Modeling of Solid–Liquid Phase Diagrams of Common-Ion Binary Salt Hydrate Mixtures. II. Calculation of Liquidus Temperatures. J Solution Chem 34, 307–315 (2005). https://doi.org/10.1007/s10953-005-3051-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-3051-2

Keywords

Navigation