Skip to main content
Log in

Aluminum-27 NMR Investigations of Aqueous and Methanolic Aluminosilicate Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aluminum-27 NMR spectroscopy was used to characterize aqueous and methanolic alkaline solutions of tetramethylammonium (TMA) aluminosilicates. Aluminosilicate solutions have been prepared with different concentrations of silicon [0.577–1.24% (w/w)], aluminum [0.0022–0.239% (w/w)], methanol [0.0–0.70% (w/w)] and H2O [0.23–90% (w/w)]. All solutions contain the same ratio of Si/TMA = 1 and Si/Al molar ratios between 0.5 and 25.27Al NMR spectra of TMA aluminosilicate solutions are characterized by a variety of aluminosilicate species such as q1(Al1OSi), q2(Al2OSi), q3(Al3OSi) and q4(Al4OSi). Aluminum-27 NMR spectra of TMA aluminosilicate solutions indicate that considerable changes occurred by changing the Si/Al ratio. The distribution of aluminosilicate species was affected by the presence of the methanol and the method of mixing the silicate and aluminosilicate solutions. A methanolic aluminosilicate solution needs about twice the time required for an aqueous aluminosilicate solution to reach a steady state, i.e., the latter takes 36 h to reach steady state. Results with the same concentration of silicon and aluminum show that the formation and distribution of aluminosilicate species are strongly dependent on the solvent comprising the silicate and aluminate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Samadi-Maybodi, R. K. Harris, S. N. Azizi, and A. M. Kenwright, Magn. Reson. Chem. 39, 443 (2001).

    Article  CAS  Google Scholar 

  2. R. M. Barrer The Hydrothermal Chemistry of Zeolites (Academic Press, London, 1982).

    Google Scholar 

  3. R. K. Harris and R. H. Newman, J. Chem. Soc. Faraday Trans. 73, 1204 (1977).

    Article  CAS  Google Scholar 

  4. R. K. Harris, J. Jones, and C. T. G. Knight, J. Mol. Struct. 69, 95 (1980).

    Article  CAS  Google Scholar 

  5. R. K. Harris, C. T. G. Knight, and W. E. Hull, J. Am. Chem. Soc. 103, 1577 (1981).

    Article  CAS  Google Scholar 

  6. R. K. Harris and C. T. G. Knight, J. Mol. Struct. 78, 273 (1982).

    Article  CAS  Google Scholar 

  7. R. K. Harris and C. T. G. Knight, J. Chem. Soc., Faraday Trans. 79, 1525 (1983).

    Google Scholar 

  8. R. K. Harris, J. Jones, C. T. G. Knight, and R. H. Newman, J. Mol. Liq. 29, 63 (1984).

    Article  CAS  Google Scholar 

  9. E. G. Derouane, S. Dettermmerie, Z. Gabelica, and N. Blom, Appl. Catal. 1, 201 (1981).

    Article  CAS  Google Scholar 

  10. C. T. G. Knight, J. Chem. Soc., Dalton Trans. 1457 (1988).

  11. L. S. Dent Glasser and G. Harvey, J. Chem. Soc., Chem. Commun. 1250 (1984).

  12. L. S. Dent Glasser and G. Harvey, in Proceedings of the Sixth International Zeolite Conference, D. Olson, and A. Bisio, eds. (Butterworths, Stoneham, MA, 1984) p. 925.

    Google Scholar 

  13. G. Harvey and L. S. Dent Glasser, in Zeolite Synthesis, M. L Occelli, and H. E. Robson, eds., ACS Sympium Series 398 (American Chemical Society, Washington, DC, 1989), p. 49.

    Google Scholar 

  14. C. T. G. Knight, R. J. Kirkpatrick, and E. Oldfield, J. Am. Chem. Soc. 109, 1632 (1987).

    Article  CAS  Google Scholar 

  15. H. C. Marsmann, Chem. Ztg. 97, 128 (1973).

    CAS  Google Scholar 

  16. A. V. McCormick, A. T. Bell, and C. J. Radke, J. Phys. Chem. 93, 1791 (1989).

    Google Scholar 

  17. S. D. Kinrade and T. W. Swaddle, Inorg. Chem. 28, 1952 (1989).

    Article  CAS  Google Scholar 

  18. A. Thangaraj and R. Kumar, Zeolites 10, 117 (1990).

    Article  CAS  Google Scholar 

  19. D. Mueller, D. Hoebkl, and W. Gessner, Chem. Phys. Lett. 84, 25 (1981).

    Article  CAS  Google Scholar 

  20. R. F. Mortlock, A. T. Bell, and C. J. Radke, J. Phys. Chem. 95, 372 (1991).

    Article  CAS  Google Scholar 

  21. R. F. Mortlock, A. T. Bell, A. K. Chakraborty, and C. J. Radke, J. Phys. Chem. 95, 4501 (1991).

    Article  CAS  Google Scholar 

  22. R. K. Harris, J. Parkinson, A Samadi-Maybodi, and W. Smith, Chem. Commun. 593 (1996).

  23. R. K. Harris, A. Samadi-Maybodi, and W. Smith, Zeolites 19, 147 (1997).

    Article  CAS  Google Scholar 

  24. A. Samadi-Maybodi, S. N. Azizi, H. Naderi-Manesh, H. Bijanzadeh, I. H. McKeag, and R. K. Harris, J. Chem. Soc. Dalton Trans. 663 (2001).

  25. E. J. Oldfield, Chem. Soc., Chem. Commun. 66 (1986).

  26. S. D. Kinrade, K. J. Maa, A. S. Schach, T. A. Sloan, and C. T. G. Knight, J. Chem. Soc., Dalton Trans. 3149 (1999).

  27. G. Engelhard, H. Jancke, D. Hoebbel, and W. Wieker, Z. Chem. 14, 109 (1974).

    Google Scholar 

  28. F. W. Wehrli and S. Wehrli, J. Magn. Reson. 44, 197 (1981).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolraouf Samadi-Maybodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadi-Maybodi, A., Goudarzi, N. & Bijanzadeh, H. Aluminum-27 NMR Investigations of Aqueous and Methanolic Aluminosilicate Solutions. J Solution Chem 34, 283–295 (2005). https://doi.org/10.1007/s10953-005-3049-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-3049-9

Keywords

Navigation