Skip to main content
Log in

Potentiometric Investigation of Fluoride Complexes of Zirconium(IV) and Hafnium(IV) in 1 M (H,Na)ClO4 Medium Using a Fluoride Ion Selective Electrode

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The stability constants of zirconium(IV) and hafnium(IV) fluoride complexes in 1 M (H,Na)ClO4 medium were measured potentiometrically at 293 K for the first time using a fluoride ion selective electrode (F-ISE). This technique has been recommended by IUPAC as the best tool for studying fluoride complexes. A number of precautions were taken to ensure the stabilization of zirconium or hafnium in 1 M (H,Na)ClO4 medium and to prevent the formation of polynuclear hydroxo complexes. The formation of only mononuclear complexes was indicated. The average log values of the overall stability constants of zirconium(IV)-fluoride complexes, β1, β2, β3 and β4 were computed by varying the concentration of metal ion and were found to be 8.49 ± 0.11, 15.76 ± 0.15, 21.57 ± 0.10, and 26.68 ± 0.16, respectively, whereas the corresponding values for hafnium(IV)-fluoride complexes were 8.22 ± 0.06, 15.48 ± 0.15, 21.76 ± 0.14, and 27.42 ± 0.15, respectively. The thermodynamic stability constant, β1, calculated for these complexes follows the same trend as expected from the linear correlation based on the Brown Sylva Ellies (BSE) model for metal-fluoride complexes provided the effective charge on Zr is taken as +4.1 instead of the formal charge of +4. Without considering this adjustment of formal charge, an attempt has also been made to explain the trend in β1 values of group(IV) metal-fluoride complexes based on electronegativity values. A good linear correlation was obtained that could explain the ability of these group(IV) ions to form different fluoride complexes with varying number of fluoride ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Hefter, Coord. Chem. Rev. 12, 221 (1974).

    Article  CAS  Google Scholar 

  2. A. D. Jones and G. R. Choppin, Actinides Rev. 1, 311 (1969).

    CAS  Google Scholar 

  3. B. Noren, Acta Chem. Scand. 21, 411 (1967).

    Google Scholar 

  4. A. M. Bond and G. T. Hefter, Critical Survey of the Stability Constants and Related Thermodynamic Data of Fluoride Complexes in Aqueous Solution (Pergamon Press, Oxford, 1980).

    Google Scholar 

  5. S. Ahrland, G. T. Hefter, and B. Noren, Acta Chem. Scand. 44, 1 (1990).

    CAS  Google Scholar 

  6. R. M. Sawant, R. K. Rastogi, M. A. Mahajan, and N. K. Chaudhuri, Talanta 43, 89 (1996).

    Article  CAS  Google Scholar 

  7. A. K. Mukherji, Analytical Chemistry of Zircoium and Hafnium (Pergamon Press, New York, 1970), p. 51

    Google Scholar 

  8. P. Gans and B. O’Sullivan, Talanta 51, 33 (2000).

    Article  CAS  Google Scholar 

  9. R. M. Sawant, G. H. Rizvi, N. K. Chaudhuri, and S. K. Patil, J. Radioanal. Nucl. Chem. 91, 41 (1985).

    CAS  Google Scholar 

  10. S. Ahrland and L. Kullberg, Acta Chem. Scand. 25, 3457 (1971).

    CAS  Google Scholar 

  11. R. M. Sawant, Studies on Fluoride Complexing of Actinides, Ph.D. Thesis, University of Mumbai, 1990.

  12. A. Sabatini, A. Vacca, and P. Gans, in Computational Methods for the Determination of Formation Constants, D. J. Leggett, ed. (Plenum Press, New York and London, 1985), p. 99.

    Google Scholar 

  13. B. E. Conway and J. O’M. Bockris, in Modern Aspects of Electrochemistry, J. O’M. Bockris, ed. (Butterworth, London, 1954), p. 72.

    Google Scholar 

  14. C. W. Davies, J. Chem. Soc. 1256 (1951).

  15. J. E. Huheey, Inorganic Chemistry, 3rd edn. (Harper International SI Edition, Harper & Row Publishers Inc., New York, 1983), p. 264.

    Google Scholar 

  16. R. J. Williams, J. Chem. Soc. 3770 (1952).

  17. W. M. Latimer, K. S. Pitzer, and J. Slansky, J. Chem. Phys. 7, 108 (1939).

    Article  CAS  Google Scholar 

  18. P. L. Brown and R. N. Sylva, J. Chem. Res. (S) 4, 110 (1987).

    Google Scholar 

  19. P. L. Brown, Talanta 36, 351 (1989).

    Article  CAS  Google Scholar 

  20. C. W. Davies, Ion Association (Butterworth, London, 1962).

    Google Scholar 

  21. N. K. Chaudhuri, R. M. Sawant, and K. L. Ramakumar, Rev. Inorg. Chem. 21, 331 (2001).

    CAS  Google Scholar 

  22. N. K. Chaudhuri, R. M. Sawant, and D. D. Sood, J. Radioanal. Nucl. Chem. 240, 993 (1999).

    CAS  Google Scholar 

  23. C. Gorller-Walrand, M. P. Gos, and W. D’Oliesslager, Radiochim. Acta 62, 55 (1993).

    CAS  Google Scholar 

  24. M. C. Day and J. Selbin, Theoretical Inorganic Chemistry, 2nd edn. (East West Press, New Delhi, 1971).

  25. S. Ahrland, D. Karipides, and B. Noren, Acta Chem. Scand. 17, 411 (1963).

    CAS  Google Scholar 

  26. B. Noren, Acta Chem. Scand. 21, 2457 (1967).

    CAS  Google Scholar 

  27. B. Noren, Acta Chem. Scand. 21, 49 (1967).

    Google Scholar 

  28. R. E. Konnick and W. H. McVey, J. Am. Chem. Soc. 71, 3182 (1949).

    Article  Google Scholar 

  29. B. Noren, Acta Chem. Scand. 21, 2435 (1967).

    CAS  Google Scholar 

  30. B. Noren, Acta Chem. Scand. 21, 2449 (1967).

    CAS  Google Scholar 

  31. B. Noren, Act. Chem. Scand. 27, 1369 (1973).

    CAS  Google Scholar 

  32. L. P. Varga and D. N. Hume, Inorg. Chem. 2, 201 (1963).

    Article  CAS  Google Scholar 

  33. L. P. Varga and D. N. Hume, Inorg. Chem. 3, 77 (1964).

    CAS  Google Scholar 

  34. B. Noren, Acta Chem. Scand. 23, 931 (1969).

    CAS  Google Scholar 

  35. S. K. Patil and V. V. Ramakrishna, Inorg. Nucl. Chem. Lett. 11, 421 (1975).

    CAS  Google Scholar 

  36. G. R. Choppin and P. J. Unrein, in Transplutonium Elements (W. Muller and R. Lindner, eds. (North-Holland-Elsevier, Amsterdam, 1976), p. 97.

    Google Scholar 

  37. R. A. Day and R. W. Stoughton, J. Am. Chem. Soc. 72, 5662 (1950).

    CAS  Google Scholar 

  38. E. L. Zebroski, H. W. Alter, and F. K. Heumann, J. Am. Chem. Soc. 74, 5646 (1951).

    Google Scholar 

  39. P. Klotz, A. Mukherji, S. Feldberg, and L. Newman, Inorg. Chem. 10, 740 (1971).

    Google Scholar 

  40. R. M. Sawant, N. K. Chaudhuri, and S. K. Patil, J. Radioanal. Nucl. Chem. 143, 295 (1990).

    CAS  Google Scholar 

  41. H. W. Dodgen and G. K. Rollefson, J. Am. Chem. Soc. 71, 2600 (1949).

    CAS  Google Scholar 

  42. R. Guillaumont and C. R. Hebd, Scances Acad. Sci. 260, 4739 (1965).

    CAS  Google Scholar 

  43. C. R. Guillaumont, Rev. Chim. Miner. 3, 339 (1966).

    CAS  Google Scholar 

  44. R. A. Day, R. N. Wilhite, and F. D. Hamilton, J. Am. Chem. Soc. 77, 3180 (1955).

    CAS  Google Scholar 

  45. I. Grenthe and J. Varfeldt, Acta Chem. Scand. 23, 988 (1969).

    CAS  Google Scholar 

  46. V. M. Vdovenko, G. A. Romanov, and V. A. Shcherbakov, Radiokhimiya 5, 581 (1963); Sov. Radiochem. 5, 538 (1964).

    Google Scholar 

  47. S. Ahrland and L. Brandt, Acta Chem. Scand. 20, 328 (1966).

    CAS  Google Scholar 

  48. V. N. Krylov, E. V. Komarov, and M. F. Pushlenkov, Radiokhimiya 11, 244 (1969); Sov. Radiochem. 11, 257 (1969).

    Google Scholar 

  49. V. N. Krylov and E. V. Komarov, Radiokhimiya 11, 105 (1969); Sov. Radiochem. 11, 99 (1969).

  50. V. N. Krylov and E. V. Komarov, Radiokhimiya 11, 101 (1969); Sov. Radiochem. 11, 94 (1969).

  51. R. T. Chitnis, S. G. Talnikar, R. G. Bhogale, and S. K. Patil, J. Radioanal. Chem. 50, 53 (1979); Radiochem. Acta 36, 19 (1984).

    Google Scholar 

  52. K. L. Nash and J. M. Cleveland, Radiochem. Acta 36, 129 (1984).

    CAS  Google Scholar 

  53. S. V. Bagawde, V. V. Ramakrishna, and S. K. Patil, Radiochem. Radioanal. Lett. 31, 56 (1977).

    Google Scholar 

  54. S. V. Bagawde, V. V. Ramakrishna, and S. K. Patil, J. Inorg. Nucl. Chem. 38, 1339 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Sawant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawant, R.M., Thakur, U.K. & Ramakumar, K.L. Potentiometric Investigation of Fluoride Complexes of Zirconium(IV) and Hafnium(IV) in 1 M (H,Na)ClO4 Medium Using a Fluoride Ion Selective Electrode. J Solution Chem 34, 113–135 (2005). https://doi.org/10.1007/s10953-005-2693-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-2693-4

Keywords

Navigation