Skip to main content
Log in

Physicochemical Properties of Ampicillin and Amoxicillin as Biologically Active Ligands with Some Alkali Earth, Transition Metal, and Lanthanide Ions in Aqueous and Mixed Solvents at 20, 30, and 40C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The acid-base equilibria of ampicillin and amoxicillin were investigated in pure water and different solvent + water mixtures (solvent = methanol, ethanol, acetone, dimethylformamide, and dimethyl sulfoxide) at a constant ionic strength (I = 0.1 mol-dm−3 KNO3) and organic solvent volume fractions of 10, 20, and 30%. The effect of temperature on these equilibria was studied at 20, 30, and 40C. Thermodynamic functions of these ligands were calculated and discussed in terms of ΔG, ΔH, and ΔS. The number of ionizable protons was determined using conductometric titrations. The formation constant of the complexes, which form by reaction of the ligands with Mg(II), Ca(II), Zn(II), Cu(II), Ni(II), Co(II), Ce(III), Pr(III), Eu(III), Gd(III), Ho(III), Er(III), and Yb(III), are determined. The relative stability of the alkali earth, transition, and lanthanide elements are compared with each other and discussed in terms of the ionic radius and the electronic structure of the outer shell of that ion. The results obtained are discussed in terms of macroscopic properties of the mixed solvents and the possible variation in microheterogenity of the solvation shells around the solute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Abdel Hadi, W. M. Hosny, and E. M. Shoukry, Egypt. J. Chem. 39(1), 49 (1996).

    Google Scholar 

  2. W. Durckheimer, J. Blumbach, R. Lattrell, and K. H. Scheunemann, Angew. Chem., Int. Ed. Engl. 24, 180 (1984).

    Google Scholar 

  3. M. I. Page, Acc. Chem. Res. 17, 144 (1984).

    Google Scholar 

  4. D. M. Campoli-Richards and R. N. Brogden, Drugs 33, 577 (1987).

    Google Scholar 

  5. P. K. Bhattacharyya and W. M. Cort, Anal. Profiles Drug Subs. 7, 19 (1978).

    Google Scholar 

  6. D. Golemi, L. Maveyraud, S. Vakulenko, J.-P. Samama, and S. Mobashery, Biochem. 98(25), 14280 (2001).

    Google Scholar 

  7. K. Bush and S. Mobashery, Adv. Exp. Med. Biol. 456, 71 (1998).

    Google Scholar 

  8. K. Bush, Clin. Infect. Dis. 311, 1085 (2001).

    Google Scholar 

  9. A. Albert and E. P. Serjeant, The Determination of Ionization Constants, A Laboratory Manual, 3rd edn. (Chapman and Hall, New York, 1984).

    Google Scholar 

  10. H. A. Flaschka, EDTA Titrations, 2nd edn. (Pergamon, Oxford, UK,1964).

    Google Scholar 

  11. R. G. Bates, Determination of pH: Theory and Practice (Wiley, New York, 1964).

    Google Scholar 

  12. E. M. Woolley and L. G. Hepler, Anal. Chem. 44(8), 1520 (1972).

    Google Scholar 

  13. E. M. Woolley, D. G. Hurkot, and L. G. Hepler, J. Phys. Chem. 74(22), 3908 (1970).

    Google Scholar 

  14. B. Gutbezahl and E. Grunwald, J. Am. Chem. Soc. 75, 565 (1953).

    Google Scholar 

  15. H. S. Harned and L. D. Fallon, J. Am. Chem. Soc. 61, 2374 (1939).

    Google Scholar 

  16. G. Douheret, Bull. Soc. Chim. Fr., 1412 (1967) and 3122 (1968).

  17. P. C. Srivastava, Thermochim. Acta 55, 125 (1982).

    Google Scholar 

  18. L. A. Herrero and A. Terron, Polyhedron 17(22), 3825 (1999).

    Google Scholar 

  19. G. H. Nancollas, Coord. Chem. Rev. 5, 379 (1970).

    Google Scholar 

  20. L. P. Hammett, J. Am. Chem. Soc. 50, 2666 (1928).

    Google Scholar 

  21. F. Frank and D. J. G. Ives, Quart. Rev. 20, 1 (1966).

    Google Scholar 

  22. H. P. Bennetto, D. Feakins, and D. L. Turner, J. Chem. Soc. 1211 (1966).

  23. R. P. T. Tomkins, The Thermodynamics of Ion-Solvation in Methanol–Water Mixtures, Thesis, Birkbeck College, University of London, 1966.

  24. B. Tremillon, Chemistry in Non-Aqueous Solvents (Reidel, Dordrecht, 1974).

    Google Scholar 

  25. E. M. Arnett, Progr. S., Phys. Org. Chem. 1, 223 (1963).

    Google Scholar 

  26. N. C. Deno and M. J. Wisotsky, J. Am. Chem. Soc. 85, 1735 (1963).

    Google Scholar 

  27. J. F. Coetzee and G. R. Padmanobhan, J. Phys. Chem. 69, 3193 (1965).

    Google Scholar 

  28. J. F. Coetzee and C. D. Ritchie, Solvent–Solvent Interaction (Dekker, New York, 1969).

    Google Scholar 

  29. H. M. Irving and H. S. Rossotti, J. Chem. Soc. 2904 (1954).

  30. A. E. Martell and R. J Motekaitis. Determination and Use of Stability Constants (VCH Publishers) New York, 1992.

    Google Scholar 

  31. K. H. Scheller, T. H. J. Abel, P. E. Polanyi, P. K. Wenk, B. E. Fisher, and H. Sigel, Eur. J. Biochem. 107, 455 (1980).

    Google Scholar 

  32. H. Sigel, K. H. Scheller., and B. Prijs, Inorg. Chim. Acta 66, 147 (1982).

    Google Scholar 

  33. H. A. Azab, A. M. El-Nady. S. A. El-Korashy, and M. M. Hamed, J. Chem. Eng. Data 40, 83 (1995).

    Google Scholar 

  34. G. L. Miessler and D. A. Tarr, Inorganic Chemistry (Prentice-Hall, London, UK, 1991).

    Google Scholar 

  35. H. Sigel, Metal Ions in Biological Systems, Vol 1: Simple Complexes (Dekker, New York, 1974).

    Google Scholar 

  36. P. Caravan, T. Hedlund, S. Liu, S. Sjöberg, and C. Orvig, J. Am. Chem. Soc. 117, 11230 (1995).

    Google Scholar 

  37. A. S. Orabi. Mansoura Sci. Bull., 28(11), 240 (2001).

    Google Scholar 

  38. H. Sigel, Chimia 41, 11 (1987).

    Google Scholar 

  39. G. R. Choppin, M. P. Goedken, and T. F. Gritmon, J. Inorg. Nucl. Chem. 39, 2025 (1977).

    Google Scholar 

  40. R. T. Morrison and R. N. Boyd, Organic Chemistry, 6th edn. (Prentice-Hall, New Jersey, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel S. Orabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orabi, A.S. Physicochemical Properties of Ampicillin and Amoxicillin as Biologically Active Ligands with Some Alkali Earth, Transition Metal, and Lanthanide Ions in Aqueous and Mixed Solvents at 20, 30, and 40C. J Solution Chem 34, 95–111 (2005). https://doi.org/10.1007/s10953-005-2075-y

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-005-2075-y

Keywords

Navigation