Journal of Solution Chemistry

, Volume 33, Issue 10, pp 1213–1242 | Cite as

Chromium(III) Hydroxide Solubility in The Aqueous Na+-OH-H2PO4-HPO2−4-PO3−4-H2O System: A Thermodynamic Model

  • Dhanpat Rai
  • Dean A. Moore
  • Nancy J. Hess
  • Linfeng Rao
  • Sue B. Clark
Article

Abstract

Chromium(III)-phosphate reactions are expected to be important in managing high-level radioactive wastes stored in tanks at many DOE sites. Extensive studies on the solubility of amorphous Cr(III) solids in a wide range of pH (2.8–14) and phosphate concentrations (10−4 to 1.0 m) at room temperature (22±2)°C were carried out to obtain reliable thermodynamic data for important Cr(III)-phosphate reactions. A combination of techniques (XRD, XANES, EXAFS, Raman spectroscopy, total chemical composition, and thermodynamic analyses of solubility data) was used to characterize solid and aqueous species. Contrary to the data recently reported in the literature,(1) only a limited number of aqueous species [Cr(OH)3H2PO4, Cr(OH)3(H2PO4)2−2), and Cr(OH)3HPO2−4] with up to about four orders of magnitude lower values for the formation constants of these species are required to explain Cr(III)-phosphate reactions in a wide range of pH and phosphate concentrations. The log Ko values of reactions involving these species [Cr(OH)3(aq)+H2PO4⇌Cr(OH)3H2PO4; Cr(OH)3(aq)+2H2PO4⇌Cr(OH)3(H2PO4)2−2; Cr(OH)3(aq)+HPO2−4⇌Cr(OH)3HPO2−4] were found to be 2.78±0.3, 3.48±0.3, and 1.97±0.3, respectively.

Thermodynamics Cr(OH)3(am) solubility hydrolysis constants ion-interaction parameters Cr(III)-phosphate complexes Cr(OH)3H2PO4, Cr(OH)3(H2PO4)2−2, Cr(OH)3HPO2−4 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. E. Ziemniak, M. E. Jones, and K. E. S. Combs, J. Solution Chem. 27,33–66 (1998).Google Scholar
  2. P. Hrma, J. Vienna, J. Crum, G. Piepel, and M. Mika, Mat. Res. Soc. Proc. 608,671–676 (2000).Google Scholar
  3. J. L. Swanson, Clean Option: An Alternative Strategy for Hanford Tank Waste Remediation. Vol. 2: Detailed Description of First Example Flowsheet. PNL-8288 (Pacific Northwest National Laboratory, Richland, WA, 1993).Google Scholar
  4. M. J. Kupfer, A. L. Boldt, K. M. Hodgson, L. W. Shelton, B. C. Simpson, R. A. Watrous, B. A. Higley, R. M. Orme, M. D. LeClair, G. L. Borsheim, R. T. Winward, N. G. Colton, S. L. Lambert, D. E. Place, and W. W. Schultz, Standard Inventories of Chemicals and Radionuclides in Hanford Site Tanks. HNF-SD-WM-TI-740 (Lockheed Martin Hanford Company, Richland, WA, 1998).Google Scholar
  5. J. D. Anderson, A History of the 200 Area Tank Farms. WHC-MR0132 (Westinghouse Hanford Company, Richland, WA, 1990).Google Scholar
  6. D. Rai, N. J. Hess, L. Rao, Z. Zhang, A. R. Felmy, D. A. Moore, S. B. Clark, and G. Lumetta, J. Solution Chem. 31,343–367 (2002).Google Scholar
  7. F. G. Zharovskii, Trudy Kowissii Analit. Khim. Akad. Nau k. SSSR 3, 101 (1951). (quoted by L. G. Sillen and A. E. Martell, Stability Constants of Metal-Ion Complexes. Special Publication No. 17. The Chemical Society, London)Google Scholar
  8. S. C. Lahiri and S. Aditya, J. Indian Chem. Soc. 43,513–517 (1966).Google Scholar
  9. A. E. Aleshechkina, V. M. Masalovich, P. K. Agasyan, and B. P. Sereda, Russ. J. Inorg. Chem. 21,973–975 (1976).Google Scholar
  10. D. Rai, B. M. Sass, and D. A. Moore, Inorg. Chem. 26,345–349 (1987).Google Scholar
  11. S. M. Sterner, A. R. Felmy, J. R. Rustad, and K. S. Pitzer, Thermodynamic Analysis of Aqueous Solutions Using INSIGHT. PNWD-SA-4436 (Pacific Northwest National Laboratory, Richland, WA, 1997).Google Scholar
  12. R. C. Weast, Handbook of Chemistry and Physics, 53rd edn. (The Chemical Rubber Co., Cleveland, OH, 1972).Google Scholar
  13. D. Rai, N. J. Hess, A. R. Felmy, D. A. Moore, M. Yui, and P. Vitorge, Radiochim. Acta 86,89–99 (1999).Google Scholar
  14. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77,2300–2308 (1973).Google Scholar
  15. K. S. Pitzer, Ion Interaction Approach: Theory and Data Correlation, Chap. 3 (CRC Press, Boca Ratan, FL, 1991).Google Scholar
  16. A. R. Felmy, D. Rai, J. A. Schramke, and J. L. Ryan, Radiochim. Acta 48,29–35 (1989).Google Scholar
  17. D. Rai, A. R. Felmy, and R. W. Szelmeczka, J. Solution Chem. 20,375–390 (1991).Google Scholar
  18. D. Rai, A. R. Felmy, S. M. Sterner, D. A. Moore, M. J. Mason, and C. F. Novak, Radiochim. Acta 79,239–247 (1997).Google Scholar
  19. D. Rai, Y. Xia, N. J. Hess, D. M. Strachan, and B. P. McGrail, J. Solution Chem. 30,949–967 (2001).Google Scholar
  20. I. R. Beattie and T. R. Gilson, J. Chem. Soc. A. 980,(1970).Google Scholar
  21. G. M. Begun, G. W. Beall, L. A. Boatner, and W. J. Gregor, J. Raman Spectrosc. 11,273 (1981).Google Scholar
  22. K. S. Pitzer and L. F. Silvester, J. Solution Chem. 5,(1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Dhanpat Rai
    • 1
  • Dean A. Moore
    • 1
  • Nancy J. Hess
    • 1
  • Linfeng Rao
    • 2
  • Sue B. Clark
    • 3
  1. 1.Pacific Northwest National LaboratoryWashington
  2. 2.Lawrence Berkeley National LaboratoryBerkeley
  3. 3.Washington State UniversityWashington

Personalised recommendations