Skip to main content
Log in

Experimental Vapor Pressures and Derived Thermodynamic Properties of Aqueous Solutions of Lithium Nitrate from 423 to 623 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Vapor pressures of six aqueous lithium nitrate solutions with molalities of (0.181, 0.526, 0.963, 1.730, 2.990, and 5.250) mol-kg−1 have been measured in the temperature range 423.15–623.15 K with a constant-volume piezometer immersed in a precision liquid thermostat. The static method was used to measure the vapor pressure. The total uncertainty of the temperature, pressure and composition measurements were estimated to be less than 15 mK, 0.2%, and 0.014%, respectively. The vapor pressures of pure water were measured with the same apparatus and procedure to confirm the accuracy of the method used for aqueous lithium nitrate solutions. The results for pure water were compared with high-accuracy PSTS data calculated from the IAPWS standard equation of state. Important thermodynamic functions (activities of water and lithium nitrate, partial molar volumes, osmotic coefficient, excess relative partial molar entropy, and relative partial molar enthalpy values of the solvent) were derived using the measured values of vapor pressure for the solution and pure water. The measured and derived thermodynamic properties for solutions were compared with data reported in the literature. The present results are consistent with most previous reported thermodynamic data for the pure water and H2O + LiNO3 solutions at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. T. Williamson, Trans. Faraday Soc. 40, 421 (1944).

    Google Scholar 

  2. M. Modell and R. C. Reid, Thermodynamics and Its Applications (Prentice-Hall, Englewood Cliffs, NJ, 1974), pp. 338–339.

    Google Scholar 

  3. A. Apelblat and E. Korin, J. Chem. Thermodyn. 30, 459 (1998).

    Google Scholar 

  4. A. L. Horvath, Handbook of Aqueous Electrolyte Solutions: Physical Properties. Estimation and Correlation Methods (Ellis Horwood. West Sussex, England, 1985).

    Google Scholar 

  5. L. V. Puchkov and V. G. Matashkin, Russ. J. Appl. Chem. 9, 1963 (1970).

    Google Scholar 

  6. R. A. Robinson, J. Am. Chem. Soc. 68, 2402 (1946).

    Google Scholar 

  7. R. A. Robinson, J. Am. Chem. Soc. 57, 1165 (1935).

    Google Scholar 

  8. R. A. Robinson and H. S. Harned, Chem. Rev. 28, 419 (1941).

    Google Scholar 

  9. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2th edn., 5th Revised Impression (Butterworths, London, 1970).

    Google Scholar 

  10. H. S. Harned and J. A. Shropshire, J. Am. Chem. Soc. 80, 2967 (1958).

    Google Scholar 

  11. W. J. Hamer and Y.-C. Wu, J. Phys. Chem. Ref. Data 1, 1047 (1972).

    Google Scholar 

  12. J. N. Pearce and A. F. Nelson, J. Am. Chem. Soc. 54, 3544 (1932).

    Google Scholar 

  13. W. Kangro and A. Groeneveld, Z. Phys. Chem. N.F. 32, 110 (1962).

    Google Scholar 

  14. G. A. Gregoriou, H. I. Kakouri, P. J. Dais, and A. S. Matinopoulos, J. Chem. Soc. Perkin Trans. 2, 1552 (1979).

    Google Scholar 

  15. G. G. Aseyev, Thermal Properties of Electrolyte Solutions. Methods for Calculation of Multicomponent Systems and Experimental Data (Begell-House, New York, 1998).

    Google Scholar 

  16. I. M. Abdulagatov and N. D. Azizov, J. Chem. Thermodyn. 36, 17 (2004).

    Google Scholar 

  17. I. M. Abdulagatov and N. D. Azizov, J. Solution Chem. 32, 573 (2003).

    Google Scholar 

  18. I. M. Abdulagatov and N. D. Azizov, Int. J. Thermophys. 24, 1581 (2003).

    Google Scholar 

  19. I. M. Abdulagatov and N. D. Azizov, Fluid Phase Equilib. 216, 189 (2003).

    Google Scholar 

  20. I. M. Abdulagatov and N. D. Azizov, J. Solution Chem. 33, 1305 (2004).

    Google Scholar 

  21. F. G. Keyes and L. B. Smith, Proc. Am. Acad. Arts Sci. 68, 505 (1933).

    Google Scholar 

  22. W. Wagner and A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002).

    Google Scholar 

  23. N. D. Azizov and T. S. Akhundov, Russ. J. Inorg. Chem. 43, 1600 (1998).

    Google Scholar 

  24. N. D. Azizov, Russ. J. Inorg. Chem. 72, 940 (1998).

    Google Scholar 

  25. N. D. Azizov, Russ. High Temp. 34, 959 (1996).

    Google Scholar 

  26. E. Hückel, Physik. Z. 26, 93 (1925).

    Google Scholar 

  27. R. N. Goldberg, J. Phys. Chem. Ref. Data 10, 671 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulagatov, I.M., Azizov, N.D. Experimental Vapor Pressures and Derived Thermodynamic Properties of Aqueous Solutions of Lithium Nitrate from 423 to 623 K. J Solution Chem 33, 1517–1537 (2004). https://doi.org/10.1007/s10953-004-1405-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-004-1405-9

KEY WORDS:

Navigation