Skip to main content
Log in

Temperature Dependence of Solubility for Ibuprofen in Some Organic and Aqueous Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The thermodynamic functions—Gibbs energy, enthalpy, and entropy of solution—were evaluated from the solubilities of ibuprofen determined at several temperatures in the pure solvents: octanol, isopropyl myristate, chloroform, cyclohexane, and water. The organic solvent-saturated aqueous media and water-saturated organic solvents were also studied, except for cyclohexane. In aqueous media, the solubility was determined at pH = 7.4 and an ionic strength 0.15 mol-L−1 (physiological values). The excess Gibbs energy and the activity coefficients of the solutes were also determined. The solubilities are higher in organic media such as chloroform and octanol than in aqueous media and cyclohexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. RobertsII, and J. D. Morrow, in Goodman & Gilman’s. The Pharmacological Basis of Therapeutics, 10th edn., J. G. Hardman, L. E. Limbird, and A. G. Gilman, eds. (McGraw-Hill, New York, 2001).

    Google Scholar 

  2. G. R. Hanson, in Remington, The Science and Practice of Pharmacy, 20th edn., A. R. Gennaro, ed. (Lippincott, Williams & Wilkins, Philadelphia, 2000).

    Google Scholar 

  3. D. J. W. Grant, M. Mehdizadeh, A. H.-L. Chow, and J. E. Fairbrother, Intern. J. Pharm. 18, 25 (1984).

    Article  Google Scholar 

  4. R. J. Prankerd and R. H. McKeown, Intern. J. Pharm. 62, 37 (1990).

    Article  Google Scholar 

  5. J. W. Mauger, A. N. Paruta, and R. J. Gerraugthty, J. Pharm. Sci. 61, 94 (1972).

    Google Scholar 

  6. J. W. Mauger, H. Petersen, K. S. Alexander, and A. N. Paruta, Drug Develop. Ind. Pharm. 3, 163 (1977).

    Google Scholar 

  7. J. W. Mauger, T. L. Breon, H. Petersen, and A. N. Paruta, Drug Develop. Ind. Pharm. 3, 351 (1977).

    Google Scholar 

  8. F. Martínez and A. Gómez, J. Solution Chem. 30, 909 (2001).

    Article  Google Scholar 

  9. F. Martínez, C. M. Ávila, and A. Gómez, J. Braz. Chem. Soc. 14, 803 (2003).

    Google Scholar 

  10. K. S. Alexander, B. Laprade, J. W. Mauger, and A. N. Paruta, J. Pharm. Sci. 67, 624 (1978).

    Google Scholar 

  11. K. S. Alexander, J. W. Mauger, H. Petersen, and A. N. Paruta, J. Pharm. Sci. 66, 42 (1977).

    Google Scholar 

  12. B. Lundberg, Acta Pharm. Suec. 16, 151 (1979).

    Google Scholar 

  13. J. A. Rogers, Intern. J. Pharm. 10, 89 (1982).

    Article  Google Scholar 

  14. A. E. Beezer, W. H. Hunter, and D. E. Storey, J. Pharm. Pharmacol. 35, 350 (1983).

    Google Scholar 

  15. M. A. Etman and V. F. Naggar, Intern. J. Pharm. 58, 177 (1990).

    Article  Google Scholar 

  16. P. A. Schwartz and A. N. Paruta, J. Pharm. Sci. 65, 252 (1976).

    Google Scholar 

  17. A. N. Paruta, Drug Develop. Ind. Pharm. 10, 453 (1984).

    Google Scholar 

  18. C. M. Ávila and F. Martínez, J. Solution Chem. 31, 975 (2002).

    Article  Google Scholar 

  19. A. T. Florence and D. Attwood, Physicochemical Principles of Pharmacy, 3rd edn. (MacMillan Press, London, 1998).

    Google Scholar 

  20. G. Cevc, in Liposomes Technology, G. Gregoriadis, ed. (CRC Press, Boca Raton, Florida, 1993).

    Google Scholar 

  21. J. Sangster, Octanol--Water Partition Coefficients: Fundamentals and Physical Chemistry (Wiley, Chichester, England, 1997).

    Google Scholar 

  22. J. Jaiswal, R. Poduri, and R. Panchagnula, Intern. J. Pharm. 179, 129 (1999).

    Article  Google Scholar 

  23. Y. Baena, MSc Thesis (National University of Colombia, 2003).

  24. USP23-NF18, The United States Pharmacopeia and The National Formulary, 23rd edn. (The United States Pharmacopeial Convention, Inc., Rockville, MD, 1994).

  25. F. Martínez, A. Gómez, and C. M. Ávila, Acta Farm. Bonaerense 21, 107 (2002).

    Google Scholar 

  26. G. Reinwald and I. Zimmermann, J. Pharm. Sci. 87, 745 (1998).

    Article  Google Scholar 

  27. G. Reinwald, I. Zimmermann, and M. Muller-Sommer, Pharm. Ind. 60, 75 (1998).

    Google Scholar 

  28. K. D. Ertel, R. A. Heasley, C. Koegel, A. Chakrabarti, and J. T. Carstensen, J. Pharm. Sci. 79, 552 (1990).

    Google Scholar 

  29. A. N. Martin, P. Bustamante, and A. H. C. Chun, Physical Pharmacy, Physical Chemical Principles in the Pharmaceutical Sciences, 4th edn. (Lea & Febiger, Philadelphia, 1993).

    Google Scholar 

  30. C. D. Herzfedt and R. Kümmel, Drug Develop. Ind. Pharm. 9, 767 (1983).

    Google Scholar 

  31. A. C. Moffat, J. V. Jackson, M. S. Moss, and B. Widdop, Clarke’s Isolation and Identification of Drugs, in Pharmaceuticals, Body Fluids, and Post-Mortem Material, 2nd edn. (Pharmaceutical Press, London, 1986).

    Google Scholar 

  32. A. Dallos and J. Liszi, J. Chem. Thermodyn. 27, 447 (1995).

    Article  Google Scholar 

  33. A. Fini, M. Laus, I. Orienti, and V. Zecchi, J. Pharm. Sci. 75, 23 (1986).

    Google Scholar 

  34. A. Kristl and G. Vesnaver, J. Chem. Soc., Faraday Trans. 91, 995 (1995).

    Google Scholar 

  35. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill Book, New York, 1969).

    Google Scholar 

  36. G. L. Perlovich, S. V. Kurkov, and A. Bauer-Brandl, Eur. J. Pharm. Sci. 19, 423 (2003).

    Article  Google Scholar 

  37. G. L. Perlovich, S. V. Kurkov, A. N. Kinchin, and A. Bauer-Brandl, Eur. J. Pharm. Biopharm. 57, 411 (2004).

    Article  Google Scholar 

  38. P. Seiler, Eur. J. Med.--Chim. Ther. 9, 473 (1974).

    Google Scholar 

  39. J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott, Regular and Related Solutions (Van Nostrand Reinhold, New York, 1970).

    Google Scholar 

  40. P. Ruelle and U. W. Kesselring, J. Pharm. Sci. 87, 998 (1998).

    Article  Google Scholar 

  41. P. Ruelle, C. Rey-Memert, M. Buchman, H. Nam-Tran, U. W. Kesselring, and P. L. Huyskens, Pharm. Res. 8, 840 (1991).

    Article  Google Scholar 

  42. M. H. Abraham and J. E. Le, J. Pharm. Sci. 88, 868 (1999).

    Article  Google Scholar 

  43. W. E. Acree, Jr. and M. H. Abraham, J. Solution Chem. 31, 293 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleming Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garzón, L.C., Martínez, F. Temperature Dependence of Solubility for Ibuprofen in Some Organic and Aqueous Solvents. J Solution Chem 33, 1379–1395 (2004). https://doi.org/10.1007/s10953-004-1051-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-004-1051-2

Navigation