Skip to main content
Log in

Dissociation Constants for Citric Acid in NaCl and KCl Solutions and their Mixtures at 25 °C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The constants for the dissociation of citric acid (H3C) have been determined from potentiometric titrations in aqueous NaCl and KCl solutions and their mixtures as a function of ionic strength (0.05–4.5 mol-dm−3) at 25 °C. The stoichiometric dissociation constants (K i *)

$$\eqalign{ & {\text{H}}_3 {\text{C}} \rightleftharpoons {\text{H}}^ + + {\text{H}}_2 {\text{C}}^ - ,\quad {\text{K}}_{\text{1}}^{\text{*}} = {{{\text{K}}_1 \gamma ({\text{H}}_3 {\text{C}})} \mathord{\left/ {\vphantom {{{\text{K}}_1 \gamma ({\text{H}}_3 {\text{C}})} {\left\{ {\gamma ({\text{H}}^ + )\gamma ({\text{H}}_2 {\text{C}}^ - )} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\gamma ({\text{H}}^ + )\gamma ({\text{H}}_2 {\text{C}}^ - )} \right\}}} \cr & {\text{H}}_2 {\text{C}}^ - \rightleftharpoons {\text{H}}^ + + {\text{HC}}^{2 - } ,\quad {\text{K}}_{\text{2}}^{\text{*}} = {{{\text{K}}_2 \gamma ({\text{H}}_2 {\text{C}}^ - )} \mathord{\left/ {\vphantom {{{\text{K}}_2 \gamma ({\text{H}}_2 {\text{C}}^ - )} {\left\{ {\gamma ({\text{H}}^ + )\gamma ({\text{HC}}^{2 - } )} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\gamma ({\text{H}}^ + )\gamma ({\text{HC}}^{2 - } )} \right\}}} \cr & {\text{HC}}^{2 - } \rightleftharpoons {\text{H}}^ + + {\text{C}}^{3 - } ,\quad {\text{K}}_{\text{3}}^{\text{*}} = {{{\text{K}}_3 \gamma ({\text{HC}}^{2 - } )} \mathord{\left/ {\vphantom {{{\text{K}}_3 \gamma ({\text{HC}}^{2 - } )} {\left\{ {\gamma ({\text{H}}^ + )\gamma ({\text{C}}^{3 - } )} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\gamma ({\text{H}}^ + )\gamma ({\text{C}}^{3 - } )} \right\}}} \cr}$$

were used to determine Pitzer parameters for citric acid (H3C), and the anions, H2C, HC2−, and C3−. The thermodynamic constants (K i ) needed for these calculations were taken from the work of R. G. Bates and G. D. Pinching (J. Amer. Chem. Soc. 71, 1274; 1949) to fit to the equations (T/K):

$$\eqalign{ & {\rm{ln }}K_1 = - 646.52280{\rm{ + }}{{{\rm{14264}}{\rm{.1855}}} \over T}{\rm{ + 115}}{\rm{.34510 ln }}T - 0.2204T{\rm{, }}\;\sigma {\rm{ = 0}}{\rm{.0032}} \cr & {\rm{ln }}K_2 = - 52.19970{\rm{ + }}{{{\rm{1842}}{\rm{.97387}}} \over T}{\rm{ + 11}}{\rm{.19421 ln }}T - 0.05487T{\rm{, }}\;\sigma {\rm{ = 0}}{\rm{.0023}} \cr & {\rm{ln }}K_3 = - 129.89305{\rm{ + }}{{{\rm{394}}{\rm{.04129}}} \over T}{\rm{ + 25}}{\rm{.36088 ln }}T - 0.09394T{\rm{, }}\;\sigma {\rm{ = 0}}{\rm{.0021}} \cr}$$

The values of Pitzer interaction parameters for Na+ and K+ with H3C, H2C, HC2−, and C3− have been determined from the measured pK values. These parameters represent the values of pK1*, pK2*, and pK3*, respectively, with standard errors of σ = 0.003–0.006, 0.015–0.016, and 0.019–0.023 for the first, second, and third dissociation constants. A simple mixing of the pK* values for the pure salts in dilute solutions yield values for the mixtures that are in good agreement with the measured values. The full Pitzer equations are necessary to estimate the values of pK i * in the mixtures at high ionic strengths. The interaction parameters found for the mixtures are ΨNa-K − H2C = − 0.00823 ± 0.0009; ΨNa-K − HC = − 0.0233 ± 0.0009, and ΨNa-K − C = 0.0299 ± 0.0055 with standard errors of σ(pK1) = 0.011, σ(pK2) = 0.011, and σ(pK3) = 0.055.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. R. Harris, Z. Wang, C. Brook, and A. Islam, (2003) Inorg. Chem. 42, 5880.

    Article  Google Scholar 

  2. J. P. Chen, S. Wu, and K.-H. Chong, (2003) Carbon 41, 1979.

    Article  Google Scholar 

  3. R.-S. Juang, S.-H. Lin, and T.-Y. Wang, (2003) Chemosphere 53, 1221.

    Article  Google Scholar 

  4. X.-Q. Shan, J. Lian, and B. Wen, (2002) Chemosphere 47, 701.

    Article  Google Scholar 

  5. J. Mizera, A. H. Bond, G. R. Choppin, and R. C. Moore, Actnide Speciation in High Ionic Media, D. T. Reed, S. Clark, and L. Rao, eds. (Plenum Publishing, New York, 1999), 113 pp.

    Google Scholar 

  6. P. G. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza, and S. Sammartano, (1990) J. Chem. Res. (S) 300(M), 2316.

    Google Scholar 

  7. A. De Robertis, C. De Stefano, C. Rigano, and S. Sammartano, (1990) J. Solution Chem. 19, 569.

    Article  Google Scholar 

  8. C. Foti, A. Gianguzza, and S. Sammartano, (1997) J. Solution Chem. 26, 631.

    Google Scholar 

  9. A. De Robertis, C. DeStefano, and C. Foti, (1999) J. Chem. Eng. Data 44, 262.

    Article  Google Scholar 

  10. R. G. Bates and G. D. Pinching, (1949) J. Am. Chem. Soc. 71, 1274.

    Google Scholar 

  11. P. Bénézeth, D. A. Palmer, and D. J. Wesolowski, (1997) J. Solution Chem. 26, 63.

    Article  Google Scholar 

  12. J. A. Schwarz, C. Contescu, V. T. Popa, A. Contescu, and Y. Lin, (1996) J. Solution Chem. 25, 877.

    Article  Google Scholar 

  13. C. De Stefano, C. Foti, A. Gianguzza, and S. Sammartano, (2000) Mar. Chem. 72, 61.

    Article  Google Scholar 

  14. C. De Stefano, P. Princi, C. Rigano, and S. Sammartano, (1987) Ann. Chim. (Rome) 77, 643.

    Google Scholar 

  15. A. LoSurdo, E. M. Alzola, and F. J. Millero, (1982) J. Chem. Thermodyn. 14, 649.

    Article  Google Scholar 

  16. E. Dedick, D. J. Stade, S. Sotolongo, J. P. Hershey, and F. J. Millero, J. Solution Chem. 19, 353 (1989).

    Google Scholar 

  17. K. S. Pitzer, Activity Coefficients in Electrolyte Solutions, Vol. I R. M. Pytkowicz, ed. (CRC Press. Boca Raton, FL, 1979), pp. 157–208.

    Google Scholar 

  18. F. J. Millero and D. Pierrot, Aquatic Geochem. 4, 153 (1998).

    Article  Google Scholar 

  19. N. Mø ller, Geochim. Cosmochim. Acta 52, 821–837 (1988).

    Article  Google Scholar 

  20. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solutions, 3rd edn. ACS Monograph No. 137 (Reinhold, New York, 1958), 803 pp.

    Google Scholar 

  21. T. F. Young, Rec. Chem. Progr. 12, 81 (1951).

    Google Scholar 

  22. F. J. Millero, Physical Chemistry of Natural Waters (Wiley-Interscience, New York, 2001), 654 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetta De Stefano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crea, F., De Stefano, C., Millero, F.J. et al. Dissociation Constants for Citric Acid in NaCl and KCl Solutions and their Mixtures at 25 °C. J Solution Chem 33, 1349–1366 (2004). https://doi.org/10.1007/s10953-004-1046-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-004-1046-z

Navigation