Skip to main content

A technical note: fully polynomial time approximation schemes for minimizing the makespan of deteriorating jobs with nonlinear processing times

Abstract

Fully polynomial time approximation schemes for scheduling deteriorating jobs with nonlinear processing times on a single machine are given via an application of the K-approximation sets and functions technique.

This is a preview of subscription content, access via your institution.

References

  • Cai, J.-Y., Cai, P., & Zhu, Y. (1998). On a scheduling problem of time deteriorating jobs. Journal of Complexity, 14, 190–209.

    Article  Google Scholar 

  • Díaz-Núñez, F., Halman, N., & Vásquez, Ó. (2019). The TV advertisements scheduling problem. Optimization Letters, 13, 81–94.

    Article  Google Scholar 

  • Fontan, F., Lemaire, P., & Brauner, N. (2018). Complexity of scheduling tasks with processing time dependent profit. HAL Archives-ouvertes. Available from https://hal.archives-ouvertes.fr/hal-01947847. Accessed 23 Dec 2018.

  • Gawiejnowicz, S. (2008). Time-dependent scheduling. Berlin: Springer.

    Book  Google Scholar 

  • Halman, N., Kellerer, H., & Strusevich, V. (2018a). Approximation schemes for a non-separable non-linear boolean programming problems under nested knapsack constraints. European Journal of Operational Research, 2, 435–447.

    Article  Google Scholar 

  • Halman, N., Klabjan, D., Li, C.-L., Orlin, J., & Simchi-Levi, D. (2014). Fully polynomial time approximation schemes for stochastic dynamic programs. SIAM Journal on Discrete Mathematics, 28, 1725–1796.

    Article  Google Scholar 

  • Halman, N., Klabjan, D., Mostagir, M., Orlin, J., & Simchi-Levi, D. (2009). A fully polynomial time approximation scheme for single-item stochastic inventory control with discrete demand. Mathematics of Operations Research, 34, 674–685.

    Article  Google Scholar 

  • Halman, N., Kovalyov, M., Quilliot, A., Shabtay, D., & Zofi, M. (2019). Bi-criteria path problem with minimum length and maximum survival probability. OR Spectrum, 41(2), 469–489.

    Article  Google Scholar 

  • Halman, N., Nannicini, G., & Orlin, J. (2018b). On the complexity of energy storage problems. Discrete Optimization, 28, 31–53.

    Article  Google Scholar 

  • Kovalyov, M. Y., & Kubiak, W. (1998). A fully polynomial approximation scheme for minimizing makespan of deteriorating jobs. Journal of Heuristics, 3, 287–297.

    Article  Google Scholar 

  • Kovalyov, M. Y., & Kubiak, W. (2012). A generic FPTAS for partition type optimisation problems. International Journal of Planning and Scheduling, 1, 209–233.

    Article  Google Scholar 

  • Kubiak, W., & van de Velde, S. L. (1998). Scheduling deteriorating jobs to minimize makespan. Naval Research Logistics, 45, 511–523.

    Article  Google Scholar 

  • Sedding, H. A. (2018). Scheduling non-monotonous convex piecewise-linear time-dependent processing times of a uniform shape. In Proceedings of the second international workshop on dynamic scheduling problems (pp. 79–84). Available from https://iwdsp2018.wmi.amu.edu.pl/wp-content/uploads/2018/09/iwdsp2018.pdf. Accessed June 2018.

  • Smith, W. E. (1956). Various optimizers for single-stage production. Naval Research Logistics Quarterly, 3, 59–66.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Israel Science Foundation, Grant No. 399/17, and by the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel. The author thanks the anonymous referees for their valuable comments and Stanislaw Gawiejnowicz for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Halman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Halman, N. A technical note: fully polynomial time approximation schemes for minimizing the makespan of deteriorating jobs with nonlinear processing times. J Sched 23, 643–648 (2020). https://doi.org/10.1007/s10951-019-00616-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-019-00616-8

Keywords

  • Dynamic scheduling
  • FPTAS
  • K-approximation sets and functions