Skip to main content
Log in

A multi-mode resource-constrained project scheduling reformulation for the waterway ship scheduling problem

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

In this paper, we address the waterway ship scheduling problem (WSSP), which finds applications in the management of ship arrivals and departures at maritime ports near channels and waterways. It incorporates practically relevant conflicts which stem from tidal changes, curfews, ship properties or traffic. We propose a reformulation of the WSSP as a variant of the multi-mode resource-constrained project scheduling problem, which incorporates time-dependent resource capacities besides earliest and latest start times for the tasks. This problem is solved through integer programming, using a compact mathematical formulation. Our approach outperforms previous methods by solving all the existing literature instances to optimality. Most of them are solved at the root node within less than 2 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.om-db.wi.tum.de/psplib.

References

  • Amirgaliyeva, Z., Mladenović, N., Todosijević, R., & Urošević, D. (2017). Solving the maximum min-sum dispersion by alternating formulations of two different problems. European Journal of Operational Research, 260(2), 444–459.

    Article  Google Scholar 

  • Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199–240.

    Article  Google Scholar 

  • Beck, J. C., Prosser, P., & Selensky, E. (2002). On the reformulation of vehicle routing problems and scheduling problems. In International symposium on abstraction, reformulation, and approximation (pp. 282–289). Berlin: Springer.

  • Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., & Lusby, R. (2011). Models for the discrete berth allocation problem: A computational comparison. Transportation Research Part E: Logistics and Transportation Review, 47(4), 461–473.

    Article  Google Scholar 

  • Campbell, J. F., Smith, L. D., Sweeney, D. C. I., Mundy, R., & Nauss, R. M. (2007). Decision tools for reducing congestion at locks on the upper Mississippi river. In 40th Hawaii international conference on system sciences, HICSS (pp. 56–56). IEEE.

  • Dassault Systems, D. (2017). Quintic website. Accessed Feburary 02, 2018, from http://www.quintiq.com/news-2017/panama-canal-to-launch-state-of-the-art-vessel-scheduling-and-maritime-resources-management-system.html.

  • Disser, Y., Klimm, M., & Lübbecke, E. (2015). Scheduling bidirectional traffic on a path. In International colloquium on automata, languages, and programming (pp. 406–418). Berlin: Springer.

  • Du, Y., Chen, Q., Lam, J. S. L., Xu, Y., & Cao, J. X. (2015). Modeling the impacts of tides and the virtual arrival policy in berth allocation. Transportation Science, 49(4), 939–956.

    Article  Google Scholar 

  • Ernst, A. T., Oğuz, C., Singh, G., & Taherkhani, G. (2017). Mathematical models for the berth allocation problem in dry bulk terminals. Journal of Scheduling, 20(5), 459–473.

    Article  Google Scholar 

  • Fischetti, M., & Monaci, M. (2014). Exploiting erraticism in search. Operations Research, 62(1), 114–122.

    Article  Google Scholar 

  • Fügenschuh, A. (2011). A set partitioning reformulation of a school bus scheduling problem. Journal of Scheduling, 14(4), 307–318.

    Article  Google Scholar 

  • Hartmann, S., & Briskorn, D. (2010). A survey of variants and extensions of the resource-constrained project scheduling problem. European Journal of Operational Research, 207(1), 1–14.

    Article  Google Scholar 

  • Iris, Ç., Pacino, D., Ropke, S., & Larsen, A. (2015). Integrated berth allocation and quay crane assignment problem: Set partitioning models and computational results. Transportation Research Part E: Logistics and Transportation Review, 81, 75–97.

    Article  Google Scholar 

  • Lalla-Ruiz, E., Expósito-Izquierdo, C., Melián-Batista, B., & Moreno-Vega, J. M. (2016). A set-partitioning-based model for the berth allocation problem under time-dependent limitations. European Journal of Operational Research, 250(3), 1001–1012.

    Article  Google Scholar 

  • Lalla-Ruiz, E., Shi, X., & Voß, S. (2018). The waterway ship scheduling problem. Transportation Research Part D: Transport and Environment, 60, 191–209.

    Article  Google Scholar 

  • Lalla-Ruiz, E., & Voß, S. (2016a). Improving solver performance through redundancy. Journal of Systems Science and Systems Engineering, 25(3), 303–325.

  • Lalla-Ruiz, E., & Voß, S. (2016b). Popmusic as a matheuristic for the berth allocation problem. Annals of Mathematics and Artificial Intelligence, 76(1–2), 173–189.

  • López, C. O., & Beasley, J. (2016). A formulation space search heuristic for packing unequal circles in a fixed size circular container. European Journal of Operational Research, 251(1), 64–73.

    Article  Google Scholar 

  • Lübbecke, E. (2015). On- and offline scheduling of bidirectional traffic. Berlin: Logos Verlag Berlin GmbH.

    Google Scholar 

  • Norman, R.J. (1973). An algorithm for the scheduling of vessels through the Panama Canal. Ph.D. thesis, Monterey, California. Naval Postgraduate School.

  • Passchyn, W., Coene, S., Briskorn, D., Hurink, J. L., Spieksma, F. C. R., & Berghe, G. V. (2016). The lockmaster’s problem. European Journal of Operational Research, 251(2), 432–441.

    Article  Google Scholar 

  • Reyck, B. D., & Herroelen, W. (1999). The multi-mode resource-constrained project scheduling problem with generalized precedence relations. European Journal of Operational Research, 119(2), 538–556.

    Article  Google Scholar 

  • Rocha, R., Grossmann, I. E., & de Aragão, M. V. P. (2017). Petroleum supply planning: Reformulations and a novel decomposition algorithm. Optimization and Engineering, 18(1), 215–240.

    Article  Google Scholar 

  • Rom, W. O., Tukel, O. I., & Muscatello, J. R. (2002). MRP in a job shop environment using a resource constrained project scheduling model. Omega, 30(4), 275–286.

    Article  Google Scholar 

  • Schwindt, C., & Zimmermann, J. (2015). Handbook on project management and scheduling (Vol. 1). Berlin: Springer.

    Google Scholar 

  • Talbot, F. B. (1982). Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science, 28(10), 1197–1210.

    Article  Google Scholar 

  • Voß, S., & Lalla-Ruiz, E. (2016). A set partitioning reformulation for the multiple-choice multidimensional knapsack problem. Engineering Optimization, 48(5), 831–850.

    Article  Google Scholar 

  • Wang, S., & Meng, Q. (2012). Robust schedule design for liner shipping services. Transportation Research Part E: Logistics and Transportation Review, 48(6), 1093–1106.

    Article  Google Scholar 

  • Xu, D., Li, C. L., & Leung, J. Y. T. (2012). Berth allocation with time-dependent physical limitations on vessels. European Journal of Operational Research, 216(1), 47–56.

    Article  Google Scholar 

  • Zhang, X., Lin, J., Guo, Z., & Liu, T. (2016). Vessel transportation scheduling optimization based on channel-berth coordination. Ocean Engineering, 112, 145–152.

    Article  Google Scholar 

  • Zhu, G., Bard, J. F., & Yu, G. (2006). A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem. INFORMS Journal on Computing, 18(3), 377–390.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their careful review of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Hill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, A., Lalla-Ruiz, E., Voß, S. et al. A multi-mode resource-constrained project scheduling reformulation for the waterway ship scheduling problem. J Sched 22, 173–182 (2019). https://doi.org/10.1007/s10951-018-0578-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-018-0578-9

Keywords

Navigation