Skip to main content

Parallel machine makespan minimization subject to machine availability and total completion time constraints

Abstract

In this paper, we study the parallel machine scheduling subject to machine availability constraint. The jobs can be resumed after being preempted by another job or interrupted by the unavailable intervals. The goal is to minimize the makespan subject to the constraint that the total completion time is minimized. We study two different machine unavailability models. In the first model, each machine has a single unavailable interval which starts from time 0. In the second model, each machine can have multiple unavailable intervals, but at any time, there is at most one machine unavailable. For each model, we show that there is an optimal polynomial time algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aslam, J., Rasala, A., Stein, C. & Young, N. (1999). Improved bicriteria existence theorems for scheduling, In Proceedings of the tenth annual ACM-SIAM symposium on discrete algorithms, pp. 846–847.

  • Chen, C. L., & Bulfin, R. L. (1993). Complexity of single machine, multicriteria scheduling problems. European Journal of Operational Research, 70, 115–125.

    Article  Google Scholar 

  • Dileepan, P., & Sen, T. (1988). Bicriteria static scheduling research for a single machine. OMEGA, 16, 53–59.

    Article  Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling, a survey. Annals of Discrete Mathematics, 5, 287–326.

    Article  Google Scholar 

  • Gupta, J. N. D., Ho, J. C., & Webster, S. (2000). Bicriteria optimisation of the makespan and mean flowtime on two identical parallel machines. Journal of Operational Research Society, 51(11), 1330–1339.

    Article  Google Scholar 

  • Hoogeveen, J. A. (2005). Multicriteria scheduling. European Journal of Operational Research, 167(3), 592–623.

    Article  Google Scholar 

  • Huo, Y. (2014). Makespan minimization on multiple machines subject to machine unavailability and total completion time constraints. In The tenth international conference on algorithmic aspects of information and management (AAIM 2014). Lecture notes in computer science (Vol. 8546, pp. 56–65).

  • Huo, Y., & Zhao, H. (2011). Bicriteria scheduling concerned with makespan and total completion time subject to machine availability constraints. Theoretical Computer Science, 412, 1081–1091.

    Article  Google Scholar 

  • Huo, Y., & Zhao, H. (2015). Total completion time minimization on multiple machines subject to machine availability and makespan constraints. European Journal of Operational Research, 243(2), 547–554.

    Article  Google Scholar 

  • Lee, C.-Y., & Liman, S. D. (1993). Capacitated two-parallel machine scheduling to minimize sum of job completion times. Discrete Applied Mathematics, 41, 211–222.

    Article  Google Scholar 

  • Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of Discrete Mathematics, 1, 343–362.

    Article  Google Scholar 

  • Leung, J. Y.-T., & Pinedo, M. L. (2003). Minimizing total completion time on parallel machines with deadline constraints. SIAM Journal on Computing, 32, 1370–1388.

    Article  Google Scholar 

  • Leung, J. Y.-T., & Pinedo, M. L. (2004). A note on the scheduling of parallel machines subject to breakdown and repair. Naval Research Logistics, 51, 60–72.

    Article  Google Scholar 

  • Leung, J. Y.-T., & Young, G. H. (1989). Minimizing schedule length subject to minimum flow time. SIAM Journal on Computing, 18(2), 314–326.

    Article  Google Scholar 

  • Liu, Z., & Sanlaville, E. (1995). Preemptive scheduling with variable profile, precedence constraints and due dates. Discrete Applied Mathematics, 58, 253–280.

    Article  Google Scholar 

  • Ma, Y., Chu, C., & Zuo, C. (2010). A survey of scheduling with deterministic machine availability constraints. Computers & Industrial Engineering, 58(2), 199–211.

    Article  Google Scholar 

  • McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science, 6(1), 1–12.

    Article  Google Scholar 

  • Panwalkar, S. S., Dudek, R. K., & Smith, M. L. (1973). Sequencing research and the industrial scheduling problem. In S. E. Elmaghraby (Ed.), Proceedings of the symposium on the theory of scheduling and its application (pp. 29–38). New York: Springer.

    Google Scholar 

  • Pinedo, M. (2012). Scheduling: Theory, models and algorithms (4th ed.). New York: Springer.

    Book  Google Scholar 

  • Saidy, H., & Taghvi-Fard, M. (2008). Study of scheduling problems with machine availability constraint. Journal of Industrial and Systems Engineering, 1(4), 360–383.

    Google Scholar 

  • Sanlaville, E., & Schmidt, G. (1998). Machine scheduling with availability constraints. Acta Informatica, 35, 795–811.

    Article  Google Scholar 

  • Schmidt, G. (2000). Scheduling with limited machine availability. European Journal of Operational Research, 121(1), 1–15.

    Article  Google Scholar 

  • Stein, C., & Wein, J. (1997). On the existence of schedules that are near-optimal for both makespan and total weighted completion time. Operations Research Letters, 21(3), 115–122.

    Article  Google Scholar 

  • T’kindt, V., & Billaut, J. C. (2002). Multicriteria scheduling: Theory, models and algorithms. Heidelberg: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Huo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huo, Y. Parallel machine makespan minimization subject to machine availability and total completion time constraints. J Sched 22, 433–447 (2019). https://doi.org/10.1007/s10951-017-0551-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-017-0551-z

Keywords

  • Bi-criteria scheduling
  • Parallel machines
  • Limited machine availability
  • Total completion time
  • Makespan
  • Polynomial time algorithm