Journal of Scheduling

, Volume 21, Issue 1, pp 3–16 | Cite as

A survey on how the structure of precedence constraints may change the complexity class of scheduling problems

  • D. ProtEmail author
  • O. Bellenguez-Morineau


This survey aims to demonstrate that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed, many problems can be \(\mathcal {NP}\)-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. Additionally, the existence of many very exciting challenges in this research area is underlined.


Scheduling Precedence constraints Complexity 


  1. Aho, I., & Mäkinen, E. (2006). On a parallel machine scheduling problem with precedence constraints. Journal of Scheduling, 9(5), 493–495.CrossRefGoogle Scholar
  2. Ambühl, C., & Mastrolilli, M. (2009). Single machine precedence constrained scheduling is a vertex cover problem. Algorithmica, 53(4), 488–503.CrossRefGoogle Scholar
  3. Ambühl, C., Mastrolilli, M., Mutsanas, N., & Svensson, O. (2011). On the approximability of single-machine scheduling with precedence constraints. Mathematics of Operations Research, 36(4), 653–669.CrossRefGoogle Scholar
  4. Baptiste, P. (1999). Polynomial time algorithms for minimizing the weighted number of late jobs on a single machine with equal processing times. Journal of Scheduling, 2, 245–252.CrossRefGoogle Scholar
  5. Baptiste, P., Brucker, P., Knust, S., & Timkovsky, V. G. (2004a). Ten notes on equal-execution-time scheduling. 4OR, 2, 111–127.CrossRefGoogle Scholar
  6. Baptiste, P., Chrobak, M., Dürr, C., Jawor, W., & Vakhania, N. (2004b). Preemptive scheduling of equal-length jobs to maximize weighted throughput. Operations Research Letters, 32(3), 258–264.CrossRefGoogle Scholar
  7. Baptiste, P., & Timkovsky, V. G. (2001). On preemption redundancy in scheduling unit processing time jobs on two parallel machines. Operations Research Letters, 28(5), 205–212.CrossRefGoogle Scholar
  8. Baptiste, P., & Timkovsky, V. G. (2004). Shortest path to nonpreemptive schedules of unit-time jobs on two identical parallel machines with minimum total completion time. Mathematical Methods of Operations Research, 60(1), 145–153.CrossRefGoogle Scholar
  9. Brightwell, G. R., & Scheinerman, E. R. (1992). Fractional dimension of partial orders. Order, 9(2), 139–158.CrossRefGoogle Scholar
  10. Brucker, P., & Knust, S. (2009). Complexity results for scheduling problems.
  11. Brucker, P. (2007). Scheduling algorithms. New York: Springer.Google Scholar
  12. Brucker, P., Garey, M. R., & Johnson, D. S. (1977). Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness. Mathematics of Operations Research, 2(3), 275–284.CrossRefGoogle Scholar
  13. Brucker, P., Hurink, J., & Knust, S. (2002). A polynomial algorithm for p| pj= 1, rj, outtree–cj. Mathematical Methods of Operations Research, 56(3), 407–412.CrossRefGoogle Scholar
  14. Brucker, P., Hurink, J., & Kubiak, W. (1999). Scheduling identical jobs with chain precedence constraints on two uniform machines. Mathematical Methods of Operations Research, 49(2), 211–219.Google Scholar
  15. Chardon, M., & Moukrim, A. (2005). The Coffman–Graham algorithm optimally solves uet task systems with overinterval orders. SIAM Journal on Discrete Mathematics, 19(1), 109–121.CrossRefGoogle Scholar
  16. Chen, B., Coffman, E., Dereniowski, D., & Kubiak, W. (2015). Normal-form preemption sequences for an open problem in scheduling theory. Journal of Scheduling. doi: 10.1007/s10951-015-0446-9.
  17. Coffman, E. G, Jr., Dereniowski, D., & Kubiak, W. (2012). An efficient algorithm for finding ideal schedules. Acta Informatica, 49(1), 1–14.CrossRefGoogle Scholar
  18. Coffman, E. G, Jr., & Graham, R. L. (1972). Optimal scheduling for two-processor systems. Acta Informatica, 1(3), 200–213.CrossRefGoogle Scholar
  19. Coffman, E. G., Sethuraman, J., & Timkovsky, V. G. (2003). Ideal preemptive schedules on two processors. Acta Informatica, 39(8), 597–612. doi: 10.1007/s00236-003-0119-6.CrossRefGoogle Scholar
  20. Correa, J. R., & Schulz, A. S. (2005). Single-machine scheduling with precedence constraints. Mathematics of Operations Research, 30(4), 1005–1021.CrossRefGoogle Scholar
  21. Courcelle, B. (1990). The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Information and Computation, 85(1), 12–75.CrossRefGoogle Scholar
  22. Dessouky, M. I., Lageweg, B. J., Lenstra, J. K., & van de Velde, S. L. (1990). Scheduling identical jobs on uniform parallel machines. Statistica Neerlandica, 44(3), 115–123.CrossRefGoogle Scholar
  23. Djellab, K. (1999). Scheduling preemptive jobs with precedence constraints on parallel machines. European Journal of Operational Research, 117(2), 355–367.CrossRefGoogle Scholar
  24. Dolev, D., & Warmuth, M. K. (1984). Scheduling precedence graphs of bounded height. Journal of Algorithms, 5(1), 48–59.CrossRefGoogle Scholar
  25. Dolev, D., & Warmuth, M. K. (1985). Profile scheduling of opposing forests and level orders. SIAM Journal on Algebraic Discrete Methods, 6(4), 665–687.CrossRefGoogle Scholar
  26. Downey, R. G., & Fellows, M. R. (2012). Parameterized complexity. New York: Springer.Google Scholar
  27. Dürr, C. (2016). The scheduling zoo.
  28. Fellows, M. R., & McCartin, C. (2003). On the parametric complexity of schedules to minimize tardy tasks. Theoretical Computer Science, 298(2), 317–324.CrossRefGoogle Scholar
  29. Ganian, R., Hliněnỳ, P., Kneis, J., Langer, A., Obdržálek, J., & Rossmanith, P. (2014). Digraph width measures in parameterized algorithmics. Discrete Applied Mathematics, 168, 88–107.CrossRefGoogle Scholar
  30. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. New York: WH Freeman.Google Scholar
  31. Garey, M. R., Johnson, D. S., Tarjan, R. E., & Yannakakis, M. (1983). Scheduling opposing forests. SIAM Journal on Algebraic Discrete Methods, 4(1), 72–93.CrossRefGoogle Scholar
  32. Gonzalez, T. F., & Johnson, D. B. (1980). A new algorithm for preemptive scheduling of trees. Journal of the ACM (JACM), 27(2), 287–312.CrossRefGoogle Scholar
  33. Gordon, V. S., Potts, C. N., Strusevich, V. A., & Whitehead, J. D. (2008). Single machine scheduling models with deterioration and learning: Handling precedence constraints via priority generation. Journal of Scheduling, 11(5), 357–370.CrossRefGoogle Scholar
  34. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.CrossRefGoogle Scholar
  35. Hu, T. C. (1961). Parallel sequencing and assembly line problems. Operations Research, 9(6), 841–848.CrossRefGoogle Scholar
  36. Huo, Y., & Leung, J. Y.-T. (2005). Minimizing total completion time for uet tasks with release time and outtree precedence constraints. Mathematical Methods of Operations Research, 62(2), 275–279.CrossRefGoogle Scholar
  37. Huo, Y., & Leung, J. Y.-T. (2006). Minimizing mean flow time for uet tasks. ACM Transactions on Algorithms (TALG), 2(2), 244–262.CrossRefGoogle Scholar
  38. Jianzhong, D., Leung, J. Y. T., & Young, G. H. (1991). Scheduling chain-structured tasks to minimize makespan and mean flow time. Information and Computation, 92(2), 219–236.CrossRefGoogle Scholar
  39. Kubiak, W. (1989). Optimal scheduling of unit-time tasks on two uniform processors under tree-like precedence constraints. Zeitschrift für Operations Research, 33(6), 423–437.Google Scholar
  40. Kubiak, W., Rebaine, D., & Potts, C. (2009). Optimality of HLF for scheduling divide-and-conquer UET task graphs on identical parallel processors. Discrete Optimization, 6, 79–91.CrossRefGoogle Scholar
  41. Lawler, E. L. (1978). Sequencing jobs to minimize total weighted completion time subject to precedence constraints. Annals of Discrete Mathematics, 2, 75–90.CrossRefGoogle Scholar
  42. Lawler, E. L. (1982). Preemptive scheduling of precedence-constrained jobs on parallel machines. In M. A. H. Dempster, J. K. Lenstra, & A. H. G. Rinnooy Kan (Eds.), Deterministic and stochastic scheduling, volume 84 of NATO advanced study institutes series (pp. 101–123). Netherlands: Springer.CrossRefGoogle Scholar
  43. Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1993). Sequencing and scheduling. Handbooks in Operations Research and Management Science, 4, 445–522.CrossRefGoogle Scholar
  44. Lenstra, J. K., & Rinnooy Kan, A. H. G. (1978). Complexity of scheduling under precedence constraints. Operations Research, 26(1), 22–35.CrossRefGoogle Scholar
  45. Lenstra, J. K., & Rinnooy Kan, A. H. G. (1980). Complexity results for scheduling chains on a single machine. European Journal of Operational Research, 4(4), 270–275.CrossRefGoogle Scholar
  46. Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling problems. Annals of Discrete Mathematics, 1, 343–362.CrossRefGoogle Scholar
  47. Leung, J. Y.-T., & Young, G. H. (1990). Minimizing total tardiness on a single machine with precedence constraints. ORSA Journal on Computing, 2(4), 346–352.CrossRefGoogle Scholar
  48. Levey, E., & Rothvoss, T. (2016) A Lasserre-based \((1+\epsilon )\)-approximation for \(Pm | p_j=1,prec | C_{max}\). To appear in STOC’16.
  49. Lushchakova, I. N. (2006). Two machine preemptive scheduling problem with release dates, equal processing times and precedence constraints. European Journal of Operational Research, 171(1), 107–122.CrossRefGoogle Scholar
  50. Middendorf, M., & Timkovsky, V. G. (1999). Transversal graphs for partially ordered sets: Sequencing, merging and scheduling problems. Journal of Combinatorial Optimization, 3(4), 417–435.CrossRefGoogle Scholar
  51. Mnich, M., & Wiese, A. (2014). Scheduling and fixed-parameter tractability. Mathematical Programming. doi: 10.1007/s10107-014-0830-9.
  52. Möhring, R. H. (1989). Computationally tractable classes of ordered sets. In I. Rival (Ed.), Algorithms and order, volume 255 of NATO ASI series (pp. 105–193). Netherlands: Springer.Google Scholar
  53. Monma, C. L. (1982). Linear-time algorithms for scheduling on parallel processors. Operations Research, 30(1), 116–124.CrossRefGoogle Scholar
  54. Monma, C. L., & Sidney, J. B. (1979). Sequencing with series-parallel precedence constraints. Mathematics of Operations Research, 4(3), 215–224.CrossRefGoogle Scholar
  55. Moukrim, A. (1999). Optimal scheduling on parallel machines for a new order class. Operations Research Letters, 24(1), 91–95.CrossRefGoogle Scholar
  56. Moukrim, A., & Quilliot, A. (1997). A relation between multiprocessor scheduling and linear programming. Order, 14(3), 269–278.CrossRefGoogle Scholar
  57. Moukrim, A., & Quilliot, A. (2005). Optimal preemptive scheduling on a fixed number of identical parallel machines. Operations Research Letters, 33(2), 143–150.CrossRefGoogle Scholar
  58. Muntz, R. R., & Coffman, E. G, Jr. (1970). Preemptive scheduling of real-time tasks on multiprocessor systems. Journal of the ACM (JACM), 17(2), 324–338.CrossRefGoogle Scholar
  59. Papadimitriou, C. H., & Yannakakis, M. (1979). Scheduling interval-ordered tasks. SIAM Journal on Computing, 8(3), 405–409.CrossRefGoogle Scholar
  60. Pinedo, M. L. (2012). Scheduling: theory, algorithms, and systems. New York: Springer.CrossRefGoogle Scholar
  61. Robertson, N., & Seymour, P. D. (1986). Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms, 7(3), 309–322.CrossRefGoogle Scholar
  62. Sauer, N. W., & Stone, M. G. (1989). Preemptive scheduling of interval orders is polynomial. Order, 5(4), 345–348.CrossRefGoogle Scholar
  63. Sidney, J. B. (1975). Decomposition algorithms for single-machine sequencing with precedence relations and deferral costs. Operations Research, 23(2), 283–298.CrossRefGoogle Scholar
  64. Svensson, O. (2011). Hardness of precedence constrained scheduling on identical machines. SIAM Journal on Computing, 40(5), 1258–1274.CrossRefGoogle Scholar
  65. Tian, Z., Ng, C. T., & Cheng, T. C. E. (2006). An \({O}(n^2)\) algorithm for scheduling equal-length preemptive jobs on a single machine to minimize total tardiness. Journal of Scheduling, 9(4), 343–364.CrossRefGoogle Scholar
  66. Timkovsky, V. G. (2003). Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity. European Journal of Operational Research, 149(2), 355–376.CrossRefGoogle Scholar
  67. Ullman, J. D. (1976). Complexity of sequencing problems. In J. L. Bruno, E. G. Coffman Jr., R. L. Graham, W. H. Kohler, R. Sethi, K. Steiglitz, & J. D. Ullman (Eds.), Computer and job/shop scheduling theory. New York: Wiley.Google Scholar
  68. Wang, T. (2015) Ordonnancement parallèle non-préeemptif avec contraintes de précédence. Technical report, Ecole Centrale Nantes.
  69. Wang, J.-B., Ng, C. T., & Cheng, T. C. E. (2008). Single-machine scheduling with deteriorating jobs under a series–parallel graph constraint. Computers and Operations Research, 35(8), 2684–2693.CrossRefGoogle Scholar
  70. Wang, J.-B., & Wang, J.-J. (2013). Single-machine scheduling with precedence constraints and position-dependent processing times. Applied Mathematical Modelling, 37(3), 649–658.CrossRefGoogle Scholar
  71. Williamson, D. P., & Shmoys, D. B. (2011). The design of approximation algorithms. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ecole des Mines de NantesNantes Cedex 3France

Personalised recommendations