Advertisement

Journal of Scheduling

, Volume 18, Issue 3, pp 275–284 | Cite as

The impact of core precedences in a cyclic RCPSP with precedence delays

  • Zdenek Hanzalek
  • Claire HanenEmail author
Article

Abstract

In this paper, we introduce a new kind of constraint, called a core precedence constraint, in a cyclic resource-constrained project scheduling problem (RCPSP) with precedence delays. We show, by an example, which kind of industrial constraints might be modeled by such core precedences in a periodic production setting. We then establish that these constraints can be quite easily added to an integer linear programming formulation of the cyclic RCPSP. Although core precedences seem to be very similar to classical precedence, they can induce infeasibility even without resource constraints. Moreover, we show that the feasibility checking problem is NP-complete in the strong sense, even assuming unit processing times and no resource constraints.

Keywords

Precedence Constraint Feasibility Problem Periodic Schedule Integer Linear Programming Model Very Long Instruction Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Grant Agency of the Czech Republic under Project GACR P103/12/1994.

References

  1. Allan, V. H., Jones, R. B., Lee, R. M., & Allan, S. J. (1995). Software pipelining. ACM Computing Surveys, 27(3), 367–432.CrossRefGoogle Scholar
  2. Ayala, M., & Artigues, C. (2010). On integer linear programming formulations for the resource-constrained modulo scheduling problem. LAAS report 10393.Google Scholar
  3. Ayala, M., Benabid, A., Artigues, C., & Hanen, C. (2013). The resource-constrained modulo scheduling problem: An experimental study. Computational Optimization and Applications, 54(3), 645–673. doi: 10.1007/s10589-012-9499-2.CrossRefGoogle Scholar
  4. Behrmann, G., Brinksma, E., Hendriks, M., & Mader, A. (2005). Production scheduling by reachability analysis: A case study. Workshop on Parallel and Distributed Real-Time Systems (WPDRTS) (p. 140.1). Los Alamitos: IEEE Computer Society Press.Google Scholar
  5. Benabid, A., & Hanen, C. (2011). Worst case analysis of decomposed software pipelining for cyclic unitary rcpsp with precedence delays. Journal of Scheduling, 14(5), 511–522.CrossRefGoogle Scholar
  6. Bonfietti, A., Lombardi, M., Benini, L., & Milano, M. (2011). A constraint based approach to cyclic rcpsp. In CP’11, pp. 130–144.Google Scholar
  7. Calland, P. Y., Darte, A., & Robert, Y. (1998). Circuit retiming applied to decomposed software pipelining. IEEE Transactions on Parallel and Distributed Systems, 9(1), 24–35. doi: 10.1109/71.655240.CrossRefGoogle Scholar
  8. Dasdan, A., Irani, S., & Gupta, R. K. (1999). Efficient algorithms for optimum cycle mean and optimum cost to time ratio problems. In: Design Automation Conference (pp. 37–42).Google Scholar
  9. Dupont de Dinechin, B., Artigues, C., & Azem, S. (2008). Resource constrained modulo scheduling. In C. Artigues, S. Demassey, & E. Neron (Eds.), Resource-constrained project scheduling: models, algorithms, extensions and applications, control systems, robotics and manufacturing series (pp. 267–277). London: ISTE and Wiley.CrossRefGoogle Scholar
  10. Dupont de Dinechin, B. (2004). From machine scheduling to vliw instruction scheduling. ST Journal of Research, 1(2), 1–35.Google Scholar
  11. Dupont de Dinechin, B. (2007). Time-indexed formulations and a large neighborhood search for the resource-constrained modulo scheduling problem. In P. Baptiste, G. Kendall, A. Munier-Kordon, & F. Sourd (Eds.), 3rd Multidisciplinary International Scheduling Conference: Theory and Applications.Google Scholar
  12. Eichenberger, A., & Davidson, E. (1997). Efficient formulation for optimal modulo schedulers. SIGPLAN-PLDI’97.Google Scholar
  13. Gasperoni, F., & Schwiegelshohn, U. (1994). Generating close to optimum loop schedules on parallel processors. Parallel Processing Letters, 4, 391–403.CrossRefGoogle Scholar
  14. Hanen, C., & Munier, A. (1994). Cyclic scheduling on parallel processors: An overview. In P. Chrétienne, E. G. Coffman, J. K. Lenstra, & Z. Liu (Eds.), Scheduling theory and its applications. Chichester: Wiley.Google Scholar
  15. Hanzalek, Z., Burget, P., & Sucha, P. (2010). Profinet io irt message scheduling with temporal constraints. IEEE Transactions on Industrial Informatics, 6(3), 369–380. doi: 10.1109/TII.2010.2052819.CrossRefGoogle Scholar
  16. Hanzalek, Z., & Jurcik, P. (2010). Energy efficient scheduling for cluster-tree wireless sensor networks with time-bounded data flows: Application to ieee 802.15.4/zigbee. IEEE Transactions on Industrial Informatics, 6(3), 438–450. doi: 10.1109/TII.2010.2050144.CrossRefGoogle Scholar
  17. Hanzalek, Z., & Pacha, T. (1998). Use of the fieldbus systems in academic setting. In Proceedings of Real-Time Systems Education III (pp. 93–97). doi: 10.1109/RTSE.1998.766518
  18. Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620.CrossRefGoogle Scholar
  19. Huff, R. A. (1993). Lifetime-sensitive modulo scheduling. In Proceedings of the ACM SIGPLAN ’93 Conference on Programming Language Design and Implementation (pp. 258–267).Google Scholar
  20. Kim, E. S., & Glass, C. (2014). Perfect periodic scheduling for three basic cycles. Journal of Scheduling, 17(1), 47–65. doi: 10.1007/s10951-013-0331-3.CrossRefGoogle Scholar
  21. Lam, M. (1988). Software pipelining: An effective scheduling technique for vliw machines. SIGPLAN Notices, 23(7), 318–328. doi: 10.1145/960116.54022.CrossRefGoogle Scholar
  22. Levner, E., Kats, V., & de Pablo, D. A. L. (2007). Cyclic scheduling in robotic cells: An extension of basic models in machine scheduling theory. In E. Levner (Ed.), Multiprocessor scheduling: Theory and applications (pp. 1–20). Vienna: I-Tech Education and Publishing.CrossRefGoogle Scholar
  23. Llosa, J. (1996). Swing modulo scheduling: A lifetime-sensitive approach. In Proceedings of the 1996 Conference on Parallel Architectures and Compilation Techniques, PACT ’96 (pp. 80). Washington, DC: IEEE Computer Society. http://dl.acm.org/citation.cfm?id=882471.883302.
  24. Munier-Kordon, A. (2010). A graph-based analysis of the cyclic scheduling problem with time constraints: Schedulability and periodicity of the earliest schedule. Journal of Scheduling, 1–15. doi: 10.1007/s10951-009-0159-z.
  25. Proth, J. M., & Xie, X. (1995). Modélisation, analyse et optimisation des systèmes à fonctionnement cyclique. Masson (1995).Google Scholar
  26. Rau, B. R. (1994). Iterative modulo scheduling: An algorithm for software pipelining loops. In Proceedings of the 27th Annual International Symposium on Microarchitecture (MICRO 27) (pp. 63–74). New York, NY: ACM.Google Scholar
  27. Robert, Y., & Vivien, F. (2009). Introduction to scheduling. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  28. Smelyanskiy, M., Mahlke, S., & Davidson, E. (2004). Probabilistic predicate -aware modulo scheduling. In International Symposium on Code Generation and Optimization: Feedback-Directed and Runtime Optimization.Google Scholar
  29. Wang, J., Eisenbeis, C., Jourdan, M., & Su, B. (1994). Decomposed software pipelining: A new perspective and a new approach. International Journal of Parallel Programming, 22(3), 351–373. doi: 10.1007/BF02577737.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Paris Sorbonnes Université, UPMC and CNRSParisFrance
  3. 3.University of Paris-Ouest-Nanterre-La-DéfenseNanterreFrance

Personalised recommendations