Advertisement

Journal of Scheduling

, Volume 18, Issue 2, pp 195–205 | Cite as

Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook

  • Claude YugmaEmail author
  • Jakey Blue
  • Stéphane Dauzère-Pérès
  • Ali Obeid
Article

Abstract

Scheduling in semiconductor manufacturing is of vital importance due to the impact on production performance indicators such as equipment utilization, cycle time, and delivery times. With the increasing complexity of semiconductor manufacturing, ever-new products and demanding customers, scheduling plans for efficient production control become crucial. Scheduling and control are mutually dependent as control requires information from scheduling, for example, where jobs are processed, and scheduling requires control information, for example, on which equipment operations can be processed. Based on a survey of the literature, this article proposes a review and an outlook for the potential improvements by binding scheduling decisions and information coming from advanced process control systems in semiconductor manufacturing.

Keywords

Scheduling Dispatching Advanced Process Control (APC) Semiconductor manufacturing 

Notes

Acknowledgments

This work constitutes part of the IMPROVE (Implementing Manufacturing science solutions to increase equiPment pROductiVity and fab pErformance) ENIAC European project. In particular, we would like to thank Philippe Vialletelle and Jacques Pinaton from STMicroelectronics for their practical advice.

References

  1. Anderson, M., & Hanish, C. K. (2007). An evaluation of the benefits of integrating run-to-run control with scheduling and dispatching systems. IEEE Transactions on Semiconductor Manufacturing, 20(4), 386–392.CrossRefGoogle Scholar
  2. Barna, G. G. (1996). APC in the semiconductor industry, history and near term prognosis. In Proceedings of advanced semiconductor manufacturing conference and workshop, Cambridge, (USA) (pp. 364–369).Google Scholar
  3. Besnard, J., Gleispach, D., Gris, H., Ferreira, A., Roussy, A., Kernaflen, C., et al. (2012). Virtual metrology modeling for cvd film thickness. International Journal of Control Science and Engineering, 2(3), 26–33.CrossRefGoogle Scholar
  4. Blue, J., Gleispach, D., Roussy, A., & Scheibelhofer, P. (2013). Tool condition diagnosis with a recipe-independent hierarchical monitoring scheme. IEEE Transactions on Semiconductor Manufacturing, 26(1), 82–91.CrossRefGoogle Scholar
  5. Boussetta, A., & Cross, A. (2005). Adaptive sampling methodology for in-line defect inspection. In Proceedings of the IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Munich (Germany) (pp. 25–31).Google Scholar
  6. Cai, Y., Kutanoglu, E., Hasenbein, J., & Qin, J. (2009). Single-machine scheduling with advanced process control constraints. Journal of Scheduling. doi: 10.1007/s10951-010-0215-8.
  7. Cassady, C. R., & Kutanoglu, E. (2005). Integrating preventive maintenance planning and production scheduling for a single machine. IEEE Transactions on Reliability, 54(2), 304–309.CrossRefGoogle Scholar
  8. Chen, A., & Blue, J. (2009). Recipe-independent indicator for tool health diagnosis and predictive maintenance. IEEE Transactions on Semiconductor Manufacturing, 22(4), 522–535.CrossRefGoogle Scholar
  9. Chen, A., & Wu, G. S. (2007). Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging markovian deterioration. International Journal of Production Research, 45(15), 3351–3379.CrossRefGoogle Scholar
  10. Cheng, F.-T., Huang, H.-C., & Kao, C.-A. (2012). Developing an automatic virtual metrology system. IEEE Transactions on Automation Science and Engineering, 9(1), 181–188.CrossRefGoogle Scholar
  11. Cheng, F.-T., Huang, H.-C., & Kao, C.-A. (2007). Dual-phase virtual metrology scheme. IEEE Transactions on Semiconductor Manufacturing, 20(4), 566–571.CrossRefGoogle Scholar
  12. Dauzère-Pérès, S., Rouveyrol, J.-L., Yugma, C., & Vialletelle, P. (2010). A smart sampling algorithm to minimize risk dynamically. In Proceedings of the IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC) (pp. 1078–8743). San Francisco: CA (USA).Google Scholar
  13. Detienne, B., Dauzère-Pérès, S., & Yugma, C. (2012). An exact approach for scheduling jobs with regular step cost functions on a single machine. Computers & Operations Research, 39(5), 1033–1043.CrossRefGoogle Scholar
  14. Detienne, B., Dauzère-Pérès, S., & Yugma, C. (2011). Scheduling jobs on parallel machines to minimize a regular step total cost function. Journal of Scheduling, 14(6), 523–538.CrossRefGoogle Scholar
  15. Edgar, T. F., Butler, S. W., Campbell, W. J., Pfeiffer, C., Bode, C., Hwang, S. B., et al. (2000). Automatic control in microelectronics manufacturing: Practices, challenges, and possibilities. Automatica, 36(11), 1567–1603.Google Scholar
  16. Engell, S., & Harjunkoski, I. (2012). Optimal operation: scheduling, advanced control and their integration. Computers & Chemical Engineering, 47, 121–133.CrossRefGoogle Scholar
  17. Faruqi, A., Goss, R., Adhikari, D., Kowtsch, T. (2008). Test wafer management and automated wafer sorting, In Proceedings of the IEEE/SEMI advanced semiconductor manufacturing conference (pp. 322–326).Google Scholar
  18. Gleispach, D., Blue, J., Roussy, A., Haselmann, M. (2012). Hierarchical monitor scheme for recipe-independent tool condition evaluation. One approach of EHF (Equipment Health Factor). In Proceedings of 12th European advanced process control and manufacturing conference (APCM), Grenoble, France.Google Scholar
  19. Good, P. R., & Purdy, M. A. (2007). An milp approach to wafer sampling and selection. IEEE Transactions on Semiconductor Manufacturing, 20(4), 400–407.CrossRefGoogle Scholar
  20. Huang, H.-C., Su, Y.-C., Cheng, F.-T., Jian, J.-M. (2007). Development of a generic virtual metrology framework. In Proceedings of IEEE International Conference on Automation Science and Engineering (CASE), Scottsdale, Arizona, (USA) (pp. 282–287).Google Scholar
  21. Holfeld, A., Barlovic, R., & Good, R. P. (2007). A fab-wide apc sampling application. IEEE Transactions on Semiconductor Manufacturing, 20(4), 393–399.CrossRefGoogle Scholar
  22. Johnzèn, C., Vialletelle, P., Dauzère-Pérès, S., Yugma, C., & Derreumaux, A. (2008). Impact of qualification management on scheduling in semiconductor manufacturing. In Proceedings of the winter simulation conference (WSC) (pp. 2059–2066). Miami: Florida (USA).Google Scholar
  23. Johnzèn, C., Dauzère-Pérès, S., & Vialletelle, P. (2011). Flexibility measures for qualification management in wafer fabs. Production Planning and Control, 22(1), 81–90.CrossRefGoogle Scholar
  24. Kurz, D., Deluca, C., Pilz, J. (2012). Sampling decision system in semiconductor manufacturing using virtual metrology, In Proceedings of the 8th IEEE international conference on automation science and engineering (case), Seoul (Korea) (pp. 74–79).Google Scholar
  25. Lee, S. B., Lee, T. Y., Liao, J., & Chang, Y. C. (2003). A capacity-dependence dynamic sampling strategy. In Proceedings of the IEEE international symposium on semiconductor manufacturing (pp. 312–314). San Jose: California (USA).Google Scholar
  26. Lensing, K., & Stirton, B. (2007). Perspectives on integrated metrology and wafer-level control. In Proceedings of the international symposium on semiconductor manufacturing (pp. 1–4). California (USA): Santa Clara.Google Scholar
  27. Li, L., & Qiao, F. (2008). The impact of the qual-run requirements of APC on the scheduling performance in semiconductor manufacturing. In Proceedings of the IEEE international conference on automation science and engineering, (CASE) (pp. 242–246). VA (USA): Arlington.Google Scholar
  28. Lynn, S. A., Ringwood, J., & MacGearailt, N. (2012). Global and local virtual metrology models for a plasma etch process. IEEE Transactions on Semiconductor Manufacturing, 25(1), 94–103.CrossRefGoogle Scholar
  29. May, G. S., Spanos, C. J. (2006). Fundamentals of semiconductor manufacturing and process control. Hoboken, New Jersey: Wiley (Chap. 6, Chap. 9, pp. 181–227, 333–378).Google Scholar
  30. Mönch, L., Fowler, J. W., Dauzère-Pérès, S., Mason, S. J., & Rose, O. (2011). A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. Journal of Scheduling, 14(6), 583–599.CrossRefGoogle Scholar
  31. Moore, G. E. (1965). Cramming more components onto integrated circuits. Electronics, 38(8), 114–117.Google Scholar
  32. Montgomery, D. C. (2009). Introduction to statistical quality control, Chap. 9. Hoboken, New Jersey: Wiley.Google Scholar
  33. Moyne, J. R., & Patel, N. S. (2007). Special section on advanced process control. IEEE Transactions on Semiconductor Manufacturing, 20(4), 343–344.CrossRefGoogle Scholar
  34. Nduhura-Munga, J., Rodriguez-Verjan, G., Dauzère-Pérès, S., Yugma, C., Vialletelle, P., & Pinaton, J. (2013). A literature review on sampling techniques in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 26(2), 188–195.CrossRefGoogle Scholar
  35. Obeid, A., Dauzère-Pérès, S., Yugma, C. (2011). Scheduling job families on parallel machines with a bi-criteria objective function under time constraints. In Proceedings of the multidisciplinary international conference on scheduling: theory and applications (MISTA), Phoenix, Arizona, (USA) (pp. 645–648).Google Scholar
  36. Obeid, A., Dauzère-Pérès, S., Yugma, C. (2012). Scheduling on parallel machines with time constraints and equipment health factors. In Proceedings of the \(8^{th}\) IEEE international conference on automation science and engineering (case 2012), Seoul, (Korea) (pp. 401–406). Google Scholar
  37. Pasadyn, A. J., Lee, H., & Edgar, T. F. (2008). Scheduling semiconductor manufacturing processes to enhance system identification. Journal of Process Control, 18(10), 946–953.CrossRefGoogle Scholar
  38. Patel, N. (2000). Control-oriented dispatching in semiconductor manufacturing. In Proceedings of the modeling and analysis of semiconductor manufacturing conference (pp. 61–66). Arizona (USA): Tempe.Google Scholar
  39. Pesotchinsky, L. (1987). Problems associated with quality control sampling in modern ic manufacturing. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 10(1), 107–110.CrossRefGoogle Scholar
  40. Purdy, M. (2007). Dynamic, weight-based sampling algorithm. In Proceedings of the international symposium on semiconductor manufacturing (pp. 1–4). California (USA): Santa Clara.Google Scholar
  41. Sarfaty, M., Shanmugasundram, A., Schwarm, A., Paik, J., Zhang, J., Pan, R., Seamons, M. J., Li, H., Hung, R., Parikh, S. (2002). Advance process control solutions for semiconductor manufacturing, In Proceedings of advanced semiconductor manufacturing conference and workshop, Boston, (USA) (pp. 101–106).Google Scholar
  42. SEMATECH. Non-product wafer (NPW) tracking guidelines. http://www.sematech.org/docubase/document/4955aeng.
  43. Stamper, A., Sivaraman, G., Sankar, R. (2012). Advanced excursion control and diagnostics for CMP process monitoring. In Proceedings of the 22nd annual SEMI advanced semiconductor manufacturing conference (ASMC), Saratoga Springs, (USA) (pp. 1–3).Google Scholar
  44. Su, A.-J., Jeng, J.-C., Huang, H.-P., Yu, C.-C., Hung, S.-Y., & Chao, C.-K. (2007). Control relevant issues in semiconductor manufacturing: Overview with some new results. Control Engineering Practice, 15(10), 1268–1279.CrossRefGoogle Scholar
  45. Su, Y. C., Lin, T. H., Cheng, F. T., & Wu, W. M. (2004). Making the move to fab-wide apc. Solide State Technology, 47(9), 426–434.Google Scholar
  46. Sun, D.-S., Choung, Y. I., Lee, Y.-J., & Jang, Y.-C. (2005). Scheduling and control for time-constrained processes in semiconductor manufacturing. In Proceedings of the IEEE international symposium on semiconductor manufacturing (pp. 295–298). San Jose: California (USA).Google Scholar
  47. Wein, L. M. (1988). Scheduling semiconductor wafer fabrication. IEEE Transactions on Semiconductor Manufacturing, 1(3), 115–130.CrossRefGoogle Scholar
  48. Williams, R., Gudmundsson, D., Monahan, K., & Shanthikumar, J. G. (1999). Optimized sample planning for wafer detect inspection. In Proceedings of the IEEE international symposium on semiconductor manufacturing conference (pp. 43–46). California (USA): Santa Clara.Google Scholar
  49. Yugma, C., Dauzère-Pérès, S., Rouveyrol, J.-L., Vialletelle, P., Pinaton, J., & Relliaud, C. (2011). A smart sampling scheduling and skipping simulator and its evaluation on real data sets. In Proceedings of the winter simulation conference (WSC) (pp. 1903–1912). Arizona (USA): Phoenix.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Claude Yugma
    • 1
    Email author
  • Jakey Blue
    • 1
  • Stéphane Dauzère-Pérès
    • 1
  • Ali Obeid
    • 1
  1. 1.Department of Manufacturing Sciences and Logistics, Center of Microelectronics of ProvenceÉcole Nationale Supérieure des Mines de Saint-ÉtienneGardanneFrance

Personalised recommendations