Journal of Scheduling

, Volume 18, Issue 3, pp 285–298 | Cite as

Schedule generation scheme for solving multi-mode resource availability cost problem by modified particle swarm optimization

  • Jian-Jun QiEmail author
  • Ya-Jie Liu
  • Ping Jiang
  • Bo Guo


The resource availability cost problem (RACP) (Möhring, Operations Research, 32:89–120, 1984) is commonly encountered in project scheduling. RACP aims to minimize the resource availability cost of a project by a given project deadline. In this study, RACP is extended from a single mode to a multi-mode called multi-mode RACP (MMRACP), which is more complicated than RACP but more convenient in practice. To solve MMRACP efficiently, forward activity list (FAL), a schedule generation scheme, is proposed. Heuristic algorithms are designed according to the characteristics of FAL to repair infeasible solutions and to improve the fitness of the solution. Modified particle swarm optimization (MPSO), which combines the advantages of particle swarm optimization and scatter search, is proposed to make the search for the best solution efficient. Computational experiments involving 180 instances are performed to validate the performance of the proposed algorithm. The results reveal that MPSO using FAL is a very effective method to solve MMRACP.


Project scheduling Multi-mode resource availability cost problem Schedule generation Forward activity list Modified particle swarm optimization 



The authors sincerely thank the associate editor and anonymous referees for their valuable comments. This research was partially supported by the National Natural Science Foundation of China under Grants 71371181, 71201166, and 71201170.


  1. Alfandari, L., Plateau, A., & Tolla, P. (2001). A two-phase path-relinking algorithm for the generalized assignment problem. Proceedings of the Fourth Metaheuristics International Conference, Porto.Google Scholar
  2. Alvarez, A. M., González-Velarde, J. L., & De-Alba, K. (2005). GRASP embedded scatter search for the multicommodity capacitated network design problem. Journal of Heuristics, 11(3), 233–257.CrossRefGoogle Scholar
  3. Barrios, A., Ballestín, F., & Valls, V. (2011). A double genetic algorithm for the MRCPSP/max. Computers & Operations Research, 38(1), 33–43.CrossRefGoogle Scholar
  4. Chen, T., Zhang, B., Hao, X., & Dai, Y. (2006, July). Task scheduling in grid based on particle swarm optimization. Fifth IEEE International Symposium on Parallel and Distributed Computing, ISPDC’06 (pp. 238–245).Google Scholar
  5. Chen, R. M., Wu, C. L., Wang, C. M., & Lo, S. T. (2010). Using novel particle swarm optimization scheme to solve resource-constrained scheduling problem in PSPLIB. Expert Systems with Applications, 37(3), 1899–1910.CrossRefGoogle Scholar
  6. Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6(1), 58–73.CrossRefGoogle Scholar
  7. Damak, N., Jarboui, B., Siarry, P., & Loukil, T. (2009). Differential evolution for solving multi-mode resource-constrained project scheduling problems. Computers & Operations Research, 36(9), 2653–2659.CrossRefGoogle Scholar
  8. Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Reactive scheduling in the multi-mode RCPSP. Computers & Operations Research, 38(1), 63–74.CrossRefGoogle Scholar
  9. Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1), 156–166.CrossRefGoogle Scholar
  10. Glover, F. (1998). A template for scatter search and path relinking. In J.-K. Hao (Ed.), Artificial evolution (pp. 1–51). Berlin: Springer.CrossRefGoogle Scholar
  11. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.CrossRefGoogle Scholar
  12. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. Proceedings of IEEE international conference on neural networks, 4, 1942–1948.CrossRefGoogle Scholar
  13. Khorasani, J. (2012). A new heuristic approach for unit commitment problem using particle swarm optimization. Arabian Journal for Science and Engineering, 37(4), 1033–1042.CrossRefGoogle Scholar
  14. Kolisch, R., & Sprecher, A. (1997). PSPLIB-a project scheduling problem library: OR software-ORSEP operations research software exchange program. European Journal of Operational Research, 96(1), 205–216.CrossRefGoogle Scholar
  15. Laguna, M., & Martín, R. (2003). Scatter search: methodology and implementations in C. Kluwer: Springer.CrossRefGoogle Scholar
  16. Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). A tabu search procedure for developing robust predictive project schedules. International Journal of Production Economics, 111(2), 493–508.CrossRefGoogle Scholar
  17. Liu, Y. H. (2006). A scatter search based approach with approximate evaluation for the heterogeneous probabilistic traveling salesman problem. IEEE Congress on InEvolutionary Computation, CEC 2006 (pp. 1603–1609).Google Scholar
  18. López, F. C. G., Torres, M. G., Pérez, J. A. M., & Vega, J. M. M. (2004). Scatter search for the feature selection problem. In R. Conejo (Ed.), Current topics in artificial intelligence (pp. 517–525). Berlin: Springer.CrossRefGoogle Scholar
  19. Lova, A., Tormos, P., Cervantes, M., & Barber, F. (2009). An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics, 117(2), 302–316.CrossRefGoogle Scholar
  20. Luo, X., Wang, D., Tang, J., & Tu, Y. (2006). An improved PSO algorithm for resource-constrained project scheduling problem, intelligent control and automation, 2006. The Sixth World Congress on WCICA, 2006(1), 3514–3518.Google Scholar
  21. Maghsoudi, M. J., Ibrahim, Z., Buyamin, S., & Rahmat, M. F. A. (2012). Data clustering for the DNA computing readout method implemented on LightCycler and based on particle swarm optimization. Arabian Journal for Science and Engineering, 37(3), 697–707.CrossRefGoogle Scholar
  22. Möhring, R. H. (1984). Minimizing costs of resource requirements in project networks subject to a fixed completion time. Operations Research, 32(1), 89–120.CrossRefGoogle Scholar
  23. Neumann, K., Nübel, H., & Schwindt, C. (2000). Active and stable project scheduling. Mathematical Methods of Operations Research, 52(3), 441–465. Google Scholar
  24. Orosz, J. E., & Jacobson, S. H. (2002). Analysis of static simulated annealing algorithms. Journal of Optimization theory and Applications, 115(1), 165–182.CrossRefGoogle Scholar
  25. Ozdamar, L. (1999). A genetic algorithm approach to a general category project scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 29(1), 44–59.CrossRefGoogle Scholar
  26. Pardalos, P. M., & Resende, M. G. (Eds.). (2002). Handbook of applied optimization. Oxford: Oxford University Press.Google Scholar
  27. Parsopoulos, K. E., & Vrahatis, M. N. (2004). On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 211–224.CrossRefGoogle Scholar
  28. Van Peteghem, V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409–418.CrossRefGoogle Scholar
  29. Ranjbar, M., Kianfar, F., & Shadrokh, S. (2008). Solving the resource availability cost problem in project scheduling by path relinking and genetic algorithm. Applied Mathematics and Computation, 196(2), 879–888.CrossRefGoogle Scholar
  30. Rodrigues, S. B., & Yamashita, D. S. (2010). An exact algorithm for minimizing resource availability costs in project scheduling. European Journal of Operational Research, 206(3), 562–568.CrossRefGoogle Scholar
  31. Russell, R. A., & Chiang, W. C. (2006). Scatter search for the vehicle routing problem with time windows. European Journal of Operational Research, 169(2), 606–622.CrossRefGoogle Scholar
  32. Santana-Quintero, L. V., Ramírez, N., & Coello, C. C. (2006). A multi-objective particle swarm optimizer hybridized with scatter search. In A. Gelbukh & C. A. Reyes-Garcia (Eds.), MICAI 2006: advances in artificial intelligence (pp. 294–304). Berlin: Springer.CrossRefGoogle Scholar
  33. Shadrokh, S., & Kianfar, F. (2007). A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. European Journal of Operational Research, 181(1), 86–101.CrossRefGoogle Scholar
  34. Shou, Y.-Y. (2010). Resource-constrained multi-project scheduling models and methods. Hangzhou: Zhejiang University Press.Google Scholar
  35. Speranza, M. G., & Vercellis, C. (1993). Hierarchical models for multi-project planning and scheduling. European Journal of Operational Research, 64(2), 312–325.CrossRefGoogle Scholar
  36. Sprecher, A., Hartmann, S., & Drexl, A. (1997). An exact algorithm for project scheduling with multiple modes. Operations-Research-Spektrum, 19(3), 195–203.Google Scholar
  37. Thomas, P. R., & Salhi, S. (1998). A tabu search approach for the resource constrained project scheduling problem. Journal of Heuristics, 4(2), 123–139.CrossRefGoogle Scholar
  38. Toklu, Y. C. (2002). Application of genetic algorithms to construction scheduling with or without resource constraints. Canadian Journal of Civil Engineering, 29(3), 421–429.CrossRefGoogle Scholar
  39. Triki, E., Collette, Y., & Siarry, P. (2005). A theoretical study on the behavior of simulated annealing leading to a new cooling schedule. European Journal of Operational Research, 166(1), 77–92.CrossRefGoogle Scholar
  40. Valls, V., Laguna, M., Lino, P., Pérez, A., & Quintanilla, S. (1999). Project scheduling with stochastic activity interruptions. In J. Wȩglarz (Ed.), Project scheduling (pp. 333–353). Kluwer: Springer.CrossRefGoogle Scholar
  41. Yamashita, D. S., Armentano, V. A., & Laguna, M. (2006). Scatter search for project scheduling with resource availability cost. European Journal of Operational Research, 169(2), 623–637.CrossRefGoogle Scholar
  42. Zhang, C., Sun, J., Zhu, X., & Yang, Q. (2008). An improved particle swarm optimization algorithm for flowshop scheduling problem. Information Processing Letters, 108(4), 204–209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Information System and ManagementNational University of Defense TechnologyChangsha Hunan, People’s Republic of China

Personalised recommendations