Journal of Scheduling

, Volume 15, Issue 4, pp 473–486 | Cite as

Routing equal-size messages on a slotted ring

  • Dariusz DereniowskiEmail author
  • Wiesław Kubiak


We deal with the problem of routing messages on a slotted ring network in this paper. We study the computational complexity and algorithms for this routing by means of the results known in the literature for the multi-slot just-in-time scheduling problem. We consider two criteria for the routing problem: makespan, or minimum routing time, and diagonal makespan. A diagonal is simply a schedule of ring links i=0,…,q−1 in q consecutive time slots, respectively. The number of diagonals between the earliest and the latest diagonals with non-empty packets is referred to as the diagonal makespan. For the former, we show that the optimal routing of messages of size k, is NP-hard in the strong sense, while an optimal routing when k=q can be computed in O(n 2log2 n) time. We also give an O(nlogn)-time constant factor approximation algorithm for unit size messages. For the latter, we prove that the optimal routing of messages of size k, where k divides the size of the ring q, is NP-hard in the strong sense even for any fixed k≥1, while an optimal routing when k=q can be computed in O(nlogn) time. We also give an O(nlogn)-time approximation algorithm with an absolute error 2qk.


Just-in-time scheduling Multi-slot scheduling Optical network Routing Slotted ring 



This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Grant OPG0105675. Moreover, Dariusz Dereniowski has been supported by the Foundation for Polish Science (FNP) and by the Polish Ministry of Science and Higher Education (MNiSW) grant N N516 196437.


  1. Barth, D., Cohen, J., Gastal, L., Mautor, T., & Rousseau, S. (2004). Fixed size and variable size packet models in an optical ring network: complexity and simulations. In ISCIS (pp. 238–246). Google Scholar
  2. Bianco, A., Bonsignori, M., Leonardi, E., & Neri, F. (2002). Variable-size packets in slotted wdm ring networks. In ONDM (pp. 167–182). Google Scholar
  3. Bianco, A., Finochietto, J. M., Galante, G., Neri, F., & Sarra, V. (2004). Scheduling variable-size packets in the David metropolitan area network. In IEEE international conference on communications, ICC (pp. 20–24). Google Scholar
  4. Biró, M., Hujter, M., & Tuza, Zs. (1992). Precoloring extension. I: Interval graphs. Discrete Mathematics, 100(1–3), 267–279. CrossRefGoogle Scholar
  5. Błażewicz, J., Ecker, K., Pesch, E., Schmidt, G., & Węglarz, J. (1996). Scheduling computer and manufacturing processes. New York: Springer. Google Scholar
  6. Błażewicz, J., Drozdowski, M., Formanowicz, P., Kubiak, W., & Schmidt, G. (2000). Scheduling preemptable tasks on parallel processors with limited availability. Parallel Computing, 26, 1195–1211. CrossRefGoogle Scholar
  7. Brandstädt, A., Le, V. B., & Spinrad, J. P. (1999). Graph classes: a survey. Philadelphia: Society for Industrial and Applied Mathematics. CrossRefGoogle Scholar
  8. Carena, A., Ferrero, V., Gaudino, R., De Feo, V., Neri, F., & Poggiolini, P. (2002). Ringo: a demonstrator of wdm optical packet network on a ring topology. In ONDM (pp. 183–197). Google Scholar
  9. Chaitou, M., Hébuterne, G., & Castel, H. (2007). Performance of multicast in wdm slotted ring networks. Computer Communications, 30(2), 219–232. CrossRefGoogle Scholar
  10. Chiaroni, D. (2008). The French RNRT ECOFRAME project: packet technology perspectives in metro networks. In Invited presentation at APOC. Google Scholar
  11. Dereniowski, D., & Kubiak, W. (2010). Makespan minimization of multislot just-in-time scheduling on single and parallel machines. Journal of Scheduling, 13, 479–492. CrossRefGoogle Scholar
  12. Gabow, H., & Tarjan, R. (1985). A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences, 30, 209–221. CrossRefGoogle Scholar
  13. Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: a guide to the theory of NP-completeness. New York: W.H. Freeman. ISBN 0716710447. Google Scholar
  14. Garey, M. R., Johnson, D. S., Miller, G. L., & Papadimitriou, C. H. (1980). The complexity of coloring circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods, 1(2), 216–227. CrossRefGoogle Scholar
  15. Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state-variable machine: a solvable case of the traveling salesman problem. Operations Research, 12(5), 655–679. CrossRefGoogle Scholar
  16. Herzog, M., Maier, M., & Reisslein, M. (2004). Metropolitan area packet-switched wdm networks: a survey on ring systems. IEEE Communications Surveys and Tutorials, 6, 2–20. CrossRefGoogle Scholar
  17. Hromkovič, J. (2001). Algorithmics for hard problems: introduction to combinatorial optimization, randomization, approximation, and heuristics. New York: Springer. ISBN 3-540-66860-8. Google Scholar
  18. Józefowska, J. (2007). Just-in-time scheduling. New York: Springer. Google Scholar
  19. Kang, C.-S., Park, B.-S., Shin, J.-D., & Jeong, J.-M. (1995). A broadband ring network: multichannel optical slotted ring. Computer Networks and ISDN Systems, 27(9), 1387–1398. CrossRefGoogle Scholar
  20. King, P. J. B., & Mitrani, I. (1987). Modeling a slotted ring local area network. IEEE Transactions on Computers, 36(5), 554–561. CrossRefGoogle Scholar
  21. Kubiak, W. (2009). Proportional optimization and fairness. New York: Springer. Google Scholar
  22. Lee, C. Y., & Chang, S. G. (1997). Balancing loads on sonet rings with integer demand splitting. Computers & Operations Research, 24(3), 221–229. CrossRefGoogle Scholar
  23. Li, V. O. K., Chang, J.-F., Lee, K.-C., & Yang, T.-S. (2007). A survey of research and standards in high-speed networks. International Journal of Digital & Analog Communication Systems, 4(4), 269–309. CrossRefGoogle Scholar
  24. Lipski, W. Jr., & Preparata, F. P. (1981). Efficient algorithms for finding maximum matchings in convex bipartite graphs and related problems. Acta Informatica, 15, 329–346. CrossRefGoogle Scholar
  25. Marsan, M. A., Fumagalli, A., Leonardi, E., & Neri, F. (1997). Modelling slotted multi-channel ring all-optical networks. In MASCOTS’97: proceedings of the 5th international workshop on modeling, analysis, and simulation of computer and telecommunications systems (p. 146). Google Scholar
  26. Myung, Y.-S., & Kim, H.-G. (2004). On the ring loading problem with demand splitting. Operations Research Letters, 32(2), 167–173. CrossRefGoogle Scholar
  27. Ries, B., & de Werra, D. (2008). On two coloring problems in mixed graphs. European Journal of Combinatorics, 29, 712–725. CrossRefGoogle Scholar
  28. Schrijver, A., Seymour, P. D., & Winkler, P. (1998). On the ring loading problem. SIAM Journal on Discrete Mathematics, 11(1), 1–14. CrossRefGoogle Scholar
  29. Sotskov, Y. N., Tanaev, V. S., & Werner, F. (2002). Scheduling problems and mixed graph colorings. Optimization, 51, 597–624. CrossRefGoogle Scholar
  30. Steiner, G., & Yeomans, J. S. (1996). A linear time algorithm for maximum matchings in convex, bipartite graphs. Computers & Mathematics with Applications, 31(12), 91–96. CrossRefGoogle Scholar
  31. Sung, S.-Ch., Čepek, O., & Hiraishi, K. (2007a). Algorithm for multislot just-in-time scheduling. In ISME’07: international symposium on management engineering. Google Scholar
  32. Sung, S.-Ch., Čepek, O., & Hiraishi, K. (2007b). Algorithm for multislot just-in-time scheduling on identical parallel machines. In ICICIC’07: proceedings of the second international conference on innovative computing, information and control (p. 120). CrossRefGoogle Scholar
  33. Tanaev, V. S., Gordon, V. S., & Shafransky, Y. M. (1994). Scheduling theory. Single stage systems. Dordrecht: Kluwer. CrossRefGoogle Scholar
  34. Vazirani, V. V. (2001). Approximation algorithms. Berlin: Springer. Google Scholar
  35. Čepek, O., & Sung, S.-Ch. (2004). Just-in-time scheduling with periodic time slots. Scientiae Mathematicae Japonicae Online, 10, 431–437. Google Scholar
  36. Wang, B.-F. (2005). Linear time algorithms for the ring loading problem with demand splitting. Journal of Algorithms, 54(1), 45–57. CrossRefGoogle Scholar
  37. Yang, H.-S., Herzog, M., Maier, M., & Reisslein, M. (2004). Metro wdm networks: performance comparison of slotted ring and awg star networks. IEEE Journal on Selected Areas in Communications, 22(8), 1460–1473. CrossRefGoogle Scholar
  38. Yao, S., Yoo, S. J. B., & Mukherjee, B. (2001). A comparison study between slotted and unslotted all-optical packet-switched network with priority-based routing. In Optical fiber communication conference and exhibit, OFC’01 (Vol. 2, pp. TuK2-1–TuK2-3). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Algorithms and System ModelingGdańsk University of TechnologyGdańskPoland
  2. 2.Faculty of Business AdministrationMemorial UniversitySt. John’sCanada

Personalised recommendations