Advertisement

Journal of Scheduling

, Volume 16, Issue 4, pp 349–368 | Cite as

Hierarchical scheduling strategies for parallel tasks and advance reservations in grids

  • Krzysztof Kurowski
  • Ariel OleksiakEmail author
  • Wojciech Piątek
  • Jan Węglarz
Open Access
Article

Abstract

Recently, the advance reservation functionality gained high importance in grids due to increasing popularity of modern applications that require interactive tasks, co-allocation of multiple resources, and performance guarantees. However, simultaneous scheduling, both advance reservations and batch tasks affects the performance. Advance reservations significantly deteriorate flow time of batch tasks and the overall resource utilization, especially in hierarchical scheduling structures. This is a consequence of unknown batch task processing times and the lack of possibility of altering allocations of advance reservations. To address these issues we present a common model for scheduling both computational batch tasks and tasks with advance reservation requests. We propose simple on-line scheduling policies and generic advices that reduce negative impact of advance reservations on a schedule quality. We also propose novel data structures and algorithms for efficient scheduling of advance reservations. A comprehensive experimental analysis is presented to show the influence of advance reservations on resource utilization, mean flow time, and mean tardiness—the criteria significant for administrators, users submitting batch tasks, and users requesting advance reservations, respectively. All experiments were performed with a well-known real workload using the GSSIM simulator.

Keywords

Grid computing Grid resource management and scheduling Scheduling with advance reservation Grid simulation Real workloads 

References

  1. Aida, K., & Casanova, H. (2009). Scheduling mixed-parallel applications with advance reservations. Cluster Computing, 12(2), 205–220. CrossRefGoogle Scholar
  2. Brodnik, A., & Nilsson, A. (2003). A static data structure for discrete advance bandwidth reservations on the Internet. Tech report, cs.DS/0308041. http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0308041.
  3. Burchard, L.-O. (2005). Analysis of data structures for admission control of advance reservation requests. IEEE Transactions on Knowledge and Data Engineering, 17(3), 413–424. CrossRefGoogle Scholar
  4. Feitelson, D. G. (2008). Looking at data. In Proceedings 22nd intl. parallel & distributed processing symp. (IPDPS) Google Scholar
  5. Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., & Epema, D. H. J. (2008). The grid workloads archive. Future Generations Computer Systems, 24(7), 672–686. CrossRefGoogle Scholar
  6. Jones, J.P., Nitzberg, B. (1999). Scheduling for parallel supercomputing: a historical perspective on achievable utilization. In Lecture notes in computer science: Vol. 1659. Proceedings of the workshop on job scheduling strategies for parallel processing (JSSPP) Berlin: Springer. Google Scholar
  7. Kurowski, K., Nabrzyski, J., Oleksiak, A., & Weglarz, J. (2006a). Scheduling jobs on the grid—multicriteria approach. Computational Methods in Science and Technology, 12(2), 122–138. Google Scholar
  8. Kurowski, K., Nabrzyski, J., Oleksiak, A., & Weglarz, J. (2006b). Grid multicriteria job scheduling with resource reservation and prediction mechanisms. In J. Józefowska & J. Weglarz (Eds.), Perspectives in modern project scheduling (pp. 345–373). New York: Springer. Google Scholar
  9. Kurowski, K., Nabrzyski, J., Oleksiak, A., & Weglarz, J. (2007). Grid scheduling simulations with GSSIM. In Proceedings of the international conference on parallel and distributed systems. doi: 10.1109/ICPADS.2007.4447835. Google Scholar
  10. Kurowski, K., Nabrzyski, J., Oleksiak, A., & Weglarz, J. (2008). Multicriteria approach to two-level hierarchy scheduling in grids. Journal of Scheduling, 11(5), 371–379. CrossRefGoogle Scholar
  11. Kurowski, K., Oleksiak, A., & Weglarz, J. (2010). Multicriteria, multi-user scheduling in grids with advance reservation. Journal of Scheduling, 13(5), 493–508. CrossRefGoogle Scholar
  12. Oleksiak, A. (2009). Multicriteria job scheduling in grids using prediction and advance resource reservation mechanisms. PhD thesis, Poznan University of Technology. Google Scholar
  13. Parallel Workload Archive (1999). Chapin, S. J., Cirne, W., Feitelson, D. G., Jones, J. P., Leutenegger, S. T., Schwiegelshohn, U., Smith, W. & Talby, D. Benchmarks and standards for the evaluation of parallel job schedulers. In Job scheduling strategies for parallel processing, Feitelson, D. G. & Rudolph, L. (Eds.). Google Scholar
  14. Parallel Workload Archive (2010). http://www.cs.huji.ac.il/labs/parallel/workload/.
  15. Platform LSF (2010) http://www.platform.com/.
  16. Sulistio, A., Kim, K. H., & Buyya, R. (2007). On incorporating an on-line strip packing algorithm into elastic grid reservation-based systems. In Proceedings of the 13th international conference on parallel and distributed systems, ICPADS, 2007. doi: 10.1109/ICPADS.2007.4447738. Google Scholar
  17. Sulistio, A., Cibej, U., Prasad, S., & Buyya, R. (2008). GarQ: an efficient scheduling data structure for advance reservations of grid resources. International Journal of Parallel, Emergent and Distributed Systems, doi: 10.1080/17445760801988979.
  18. Tchernykh, A., Ramarez, J., Avetisyan, A., Kuzjurin, N., Grushin, D., & Zhuk, S. (2006). Two-level job-scheduling strategies for a computational grid. In X. Wyrzykowski, et al. (Ed.), LNCS: Vol. 3911. Parallel processing and applied mathematics, the second grid resource management workshop (GRMW’2005) in conjunction with the sixth international conference on parallel processing and applied mathematics—PPAM 2005. Poznan (pp. 774–781). Berlin: Springer. Google Scholar
  19. Xiong, Q., Wu, C., Xing, J., Wu, L., & Zhang, H. (2005). A linked-list data structure for advance reservation admission control. In Networking and mobile computing (pp. 901–910). Berlin: Springer. CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Krzysztof Kurowski
    • 1
  • Ariel Oleksiak
    • 1
    Email author
  • Wojciech Piątek
    • 1
  • Jan Węglarz
    • 1
    • 2
  1. 1.Poznan Supercomputing and Networking CenterPoznanPoland
  2. 2.Institute of Computing SciencePoznan University of TechnologyPoznanPoland

Personalised recommendations