Journal of Scheduling

, Volume 15, Issue 5, pp 601–614 | Cite as

Solving the traveling tournament problem with iterative-deepening A

  • David C. UthusEmail author
  • Patricia J. Riddle
  • Hans W. Guesgen


This work presents an iterative-deepening A (IDA) based approach to the traveling tournament problem (TTP). The TTP is a combinatorial optimization problem which abstracts the Major League Baseball schedule. IDA is able to find optimal solutions to this problem, with performance improvements coming from the incorporation of various past concepts including disjoint pattern databases, symmetry breaking, and parallelization along with new ideas of subtree skipping, forced deepening, and elite paths to help to reduce the search space. The results of this work show that an IDA based approach can find known optimal solutions to most TTP instances much faster than past approaches. More importantly, it has been able to optimally solve two larger instances that have been unsolved since the problem’s introduction in 2001. In addition, a new problem set called GALAXY is introduced, using a 3D space to create a challenging problem set.


Sports scheduling Traveling tournament problem Heuristic search Iterative-deepening A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benoist, T., Laburthe, F., & Rottembourg, B. (2001). Lagrange relaxation and constraint programming collaborative schemes for travelling tournament problems. In CP-AI-OR 2001 (pp. 15–26). Wye College, UK. Google Scholar
  2. Dechter, R. (2003). Constraint processing. San Francisco: Morgan Kaufmann. Google Scholar
  3. Easton, K., Nemhauser, G. L., & Trick, M. A. (2001). The traveling tournament problem: Description and benchmarks. In T. Walsh (Ed.), Lecture notes in computer science (Vol. 2239, pp. 580–584). Berlin: Springer. Google Scholar
  4. Easton, K., Nemhauser, G., & Trick, M. (2003). Solving the travelling tournament problem: A combined integer programming and constraint programming approach. In Lecture notes in computer science: Vol. 2740. Practice and theory of automated timetabling IV (pp. 100–109). Berlin/Heidelberg: Springer. CrossRefGoogle Scholar
  5. Gschwind, T., & Irnich, S. (2011). A note on symmetry reduction for circular traveling tournament problems. European Journal of Operational Research, 210(2), 452–456. CrossRefGoogle Scholar
  6. Hafidi, Z., Talbi, E. G., & Goncalves, G. (1995). Load balancing and parallel tree search: the MPIDA algorithm. In E. H. D’Hollander, G. R. Joubert, F. J. Peters, & D. Trystram (Eds.), ParCo’95 (pp. 93–100). Amsterdam: Elsevier. Google Scholar
  7. Irnich, S. (2010). A new branch-and-price algorithm for the traveling tournament problem. European Journal of Operational Research, 204(2), 218–228. CrossRefGoogle Scholar
  8. Irnich, S., & Schrempp, U. (2008). A new branch-and-price algorithm for the traveling tournament problem. Presented at Column Generation 2008, Aussois, France, June 17–20, 2008. Available from: [Accessed 28 Nov, 2010].
  9. Kendall, G., Knust, S., Ribeiro, C. C., & Urrutia, S. (2010). Scheduling in sports: an annotated bibliography. Computers & Operations Research, 37(1), 1–19. CrossRefGoogle Scholar
  10. Korf, R. E. (1985). Depth-first iterative-deepening: an optimal admissible tree search. Artificial Intelligence, 27(1), 97–109. CrossRefGoogle Scholar
  11. Korf, R. E., & Felner, A. (2002). Disjoint pattern database heuristics. Artificial Intelligence, 134(1–2), 9–22. CrossRefGoogle Scholar
  12. Powley, C., & Korf, R. (1991). Single-agent parallel window search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5), 466–477. CrossRefGoogle Scholar
  13. Powley, C., Ferguson, C., & Korf, R. E. (1993). Depth-first heuristic search on a SIMD machine. Artificial Intelligence, 60(2), 199–242. CrossRefGoogle Scholar
  14. Rao, V. N., Kumar, V., & Ramesh, K. (1987). A parallel implementation of iterative-deepening-A. In Proceedings of AAAI (pp. 178–182). Google Scholar
  15. Rasmussen, R. V., & Trick, MA (2008). Round robin scheduling—a survey. European Journal of Operational Research, 188(3), 617–636. CrossRefGoogle Scholar
  16. Sarkar, U. K., Chakrabarti, P. P., Ghose, S., & De Sarkar, S. C. (1991). Reducing reexpansions in iterative-deepening search by controlling cutoff bounds. Artificial Intelligence, 50(2), 207–221. CrossRefGoogle Scholar
  17. Talbi, E. G. (2006). Parallel combinatorial optimization. Hoboken: Wiley. CrossRefGoogle Scholar
  18. Trick, M. A. (2010). Challenge traveling tournament problems.
  19. Urrutia, S., & Ribeiro, C. C. (2006). Maximizing breaks and bounding solutions to the mirrored traveling tournament problem. Discrete Applied Mathematics, 154(13):1932–1938. CrossRefGoogle Scholar
  20. Urrutia, S., Ribeiro, C., & Melo, R. (2007). A new lower bound to the traveling tournament problem. In IEEE symposium on computational intelligence in scheduling (pp. 15–18). CrossRefGoogle Scholar
  21. Uthus, D. C., Riddle, P. J., & Guesgen, H. W. (2009a). An ant colony optimization approach to the traveling tournament problem. In: F. Rothlauf (Ed.), GECCO (pp. 81–88). New York: ACM. CrossRefGoogle Scholar
  22. Uthus, D. C., Riddle, P. J., & Guesgen, H. W. (2009b). DFS and the traveling tournament problem. In: CPAIOR’09 (pp. 279–293). Berlin/Heidelberg: Springer. Google Scholar
  23. Vempaty, N., Kumar, V., & Korf, R. (1991). Depth-first vs best-first search. In Proceedings of AAAI-91 (pp. 434–440). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David C. Uthus
    • 1
    Email author
  • Patricia J. Riddle
    • 2
  • Hans W. Guesgen
    • 3
  1. 1.Naval Research LaboratoryWashingtonUSA
  2. 2.University of AucklandAucklandNew Zealand
  3. 3.Massey UniversityPalmerston NorthNew Zealand

Personalised recommendations