Skip to main content
Log in

Parametric algorithms for 2-cyclic robot scheduling with interval processing times

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

Consider an m-machine production line for processing identical parts served by a mobile robot. The problem is to find the minimum cycle time for 2-cyclic schedules, that is, schedules in which exactly two parts enter and two parts leave the production line during each cycle. This work treats a special case of the 2-cyclic robot scheduling problem when the robot route is given and operation durations are chosen from prescribed intervals. A strongly polynomial algorithm of time complexity O(m 8log m) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blazewicz, J., Sethi, S. P., & Sriskandarajah, C. (1989). Scheduling of robot moves and parts in a robotic cell. In K. E. Stecke & R. Suri (Eds.), Operations research models and applications (pp. 281–286). Amsterdam: Elsevier.

    Google Scholar 

  • Brauner, N. (2008). Identical part production in cyclic robotic cells: Concepts, overview and open questions. Discrete Applied Mathematics, 156, 2480–2492.

    Article  Google Scholar 

  • Brauner, N., & Finke, G. (2001a). Cycles and permutations in robotic cells. Mathematical and Computer Modeling, 34, 565–591.

    Article  Google Scholar 

  • Brauner, N., & Finke, G. (2001b). Optimal moves of the material handling system in a robotic cell. International Journal of Production Economics, 74, 269–277.

    Article  Google Scholar 

  • Brauner, N., Finke, G., & Kubiak, W. (2003). Complexity of one-cycle robotic flow shops. Journal of Scheduling, 6(4), 355–371.

    Article  Google Scholar 

  • Chandru, V., & Rao, M. R. (1999). Linear programming. In M. J. Atallah (Ed.), Algorithms and theory of computation handbook (pp. 31-1–31.37). New York: CRC Press.

    Google Scholar 

  • Che, A., Chu, C., & Chu, F. (2002). Multicyclic hoist scheduling with constant processing times. IEEE Transactions on Robotics and Automation, 18(1), 69–80.

    Article  Google Scholar 

  • Che, A., Chu, C., & Levner, E. (2003). A polynomial algorithm for 2-degree cyclic robot scheduling. European Journal of Operational Research, 145(1), 31–44.

    Article  Google Scholar 

  • Chu, C. (2006). A faster polynomial algorithm for 2-cyclic robotic scheduling. Journal of Scheduling, 9(5), 453–468.

    Article  Google Scholar 

  • Crama, Y., Kats, V., Van de Klundert, J., & Levner, E. (2000). Cyclic scheduling in robotic flowshop. Annals of Operations Research, 96(1–4), 97–123.

    Article  Google Scholar 

  • Dawande, M., Sriskandarajah, C., & Sethi, S. P. (2002). On throughput maximization in constant travel time robotic cells. Manufacturing and Service Operations Management, 4(4), 296–312.

    Article  Google Scholar 

  • Dawande, M., Geismar, H. N., Sethi, S. P., & Sriskandarajah, C. (2005). Sequencing and scheduling in robotic cells: Recent developments. Journal of Scheduling, 8, 387–426.

    Article  Google Scholar 

  • Dawande, M. W., Geismar, H. N., Sethi, S. P., & Sriskandarajah, C. (2007). Througput optimization in robotic cells. Berlin: Springer.

    Google Scholar 

  • Dawande, M. W., Geismar, H. N., Pinedo, M., & Sriskandarajah, C. (2010). Throughput optimization in dual-gripper interval robotic cells. IIE Transactions, 42(1), 1–15.

    Article  Google Scholar 

  • Geismar, H. N., Dawande, M., & Sriskandarajah, C. (2005). Approximation algorithms for k-unit cyclic solutions in robotic cells. European Journal of Operational Research, 162(2), 291–309.

    Article  Google Scholar 

  • Hall, N. G. (2007). Operations research techniques for robotic systems. In S. Y. Nof (Ed.), Handbook of industrial robotics (Vol. II, pp. 543–577). New York: Wiley.

    Google Scholar 

  • Ioachim, I., & Soumis, F. (1995). Schedule efficiency in a robotic production cell. International Journal of Flexible Manufacturing Systems, 7, 5–26.

    Article  Google Scholar 

  • Kats, V., & Levner, E. (2002). Cyclic scheduling on a robotic production line. Journal of Scheduling, 5, 23–41.

    Article  Google Scholar 

  • Kats, V., & Levner, E. (2008). Parametric algorithms for cyclic scheduling problems with applications to robotics. In A. Gelbukh & E. F. Morales (Eds.), Lecture notes in computer science : Vol. 5317. Proceedings of MICAI-2008 (pp. 653–663). Berlin: Springer.

    Google Scholar 

  • Kats, V., & Levner, E. (2009). A polynomial algorithm for 2-cyclic robotic scheduling: A non-Euclidean case. Discrete Applied Mathematics, 157(2), 339–355.

    Article  Google Scholar 

  • Kats, V., Levner, E., & Meyzin, L. (1999). Multiple-part cyclic hoist scheduling using a sieve method. IEEE Transactions on Robotics and Automation, 15(4), 704–713.

    Article  Google Scholar 

  • Kats, V., Lei, L., & Levner, E. (2008). Minimizing the cycle time of multiple-product processing networks with a fixed operation sequence and time-window constraints. European Journal of Operational Research, 187(3), 1196–1211.

    Article  Google Scholar 

  • Lei, L., & Wang, T. J. (1989). A proof: the cyclic hoist-scheduling problem is NP-complete (Working paper #89-0016). Graduate School of Management, Rutgers University, New Jersey.

  • Lei, L., & Wang, T. J. (1994). Determining optimal cyclic hoist schedules in a single-hoist electroplating line. IEE Transactions, 26(2), 25–33.

    Article  Google Scholar 

  • Levner, E., & Kats, V. (1998). A parametric critical path problem and an application for cyclic scheduling. Discrete Applied Mathematics, 87, 149–158.

    Article  Google Scholar 

  • Levner, E., Kats, V., & Sriskandarajah, C. (1996). A geometric algorithm for finding two-unit cyclic schedules in no-wait robotic flowshop. In E. Levner (Ed.), Intelligent scheduling of robots and FMS (pp. 101–112). Holon: HAIT Press.

    Google Scholar 

  • Levner, E., Kats, V., & Levit, V. (1997). An improved algorithm for cyclic flowshop scheduling in a robotic cell. European Journal of Operational Research, 97, 500–508.

    Article  Google Scholar 

  • Mount, D. M. (2004). Geometric intersection. In J. E. Goodman & J. O’Rourke (Eds.), The handbook of discrete and computational geometry (pp. 857–876). Boca Raton: Chapman&Hall/CRC.

    Google Scholar 

  • Smale, S. (2000). Mathematical problems for the next century. In V. Arnold, M. Atiyah, P. Lax, & B. Mazur (Eds.), Mathematics: frontiers and perspectives (pp. 271–294). Providence: American Mathematics Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Levner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kats, V., Levner, E. Parametric algorithms for 2-cyclic robot scheduling with interval processing times. J Sched 14, 267–279 (2011). https://doi.org/10.1007/s10951-010-0166-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-010-0166-0

Keywords

Navigation