Journal of Scheduling

, Volume 13, Issue 2, pp 111–121 | Cite as

Production setup-sequencing and lot-sizing at an animal nutrition plant through atsp subtour elimination and patching

  • Alistair R. ClarkEmail author
  • Reinaldo Morabito
  • Eli A. V. Toso


This paper considers the usefulness of a production lot sizing and scheduling model at an animal nutrition plant with sequence-dependent setup times. The model covers multiple periods and is based on the asymmetric travelling salesman problem (atsp). It is applied initially to the case where the setup state is zeroed between periods, and then revised to model the carryover of the setup state from one period to the next. An iterative solution procedure based on subtour elimination is applied, and then enhanced by the inclusion of a subtour patching procedure. Case-based tests with actual plant data show that the subtour elimination is practicably fast where the setup state is zeroed between periods, but needs the patching procedure when the setup state is preserved, as is the situation at the plant. In this latter case, the subtour elimination and patching can be very fast, showing the method’s viability for operational lot sizing and sequencing in animal nutrition plants of the kind studied. Tests on perturbed plant data show that further algorithmic development is needed to tackle certain challenging variants found in other plants.


Lot sizing Production scheduling Sequence-dependent setup times Asymmetric travelling salesman problem Animal nutrition industry Case-study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araújo, S. A., Arenales, M. N., & Clark, A. R. (2007). Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. Journal of Heuristics, 13(4), 337–358. CrossRefGoogle Scholar
  2. Araújo, S. A., Arenales, M. N., & Clark, A. R. (2008). Lot-sizing and furnace scheduling in small foundries. Computers and Operations Research, 35, 916–932. CrossRefGoogle Scholar
  3. Arosio, M., & Sianesi, A. (1993). A heuristic algorithm for master production scheduling generation with finite capacity and sequence dependent setups. International Journal of Production Research, 31, 531–553. CrossRefGoogle Scholar
  4. Buriol, L., Franca, P. M., & Moscato, P. (2004). A new memetic algorithm for the asymmetric traveling salesman problem. Journal of Heuristics, 10(5), 483–506. CrossRefGoogle Scholar
  5. Carpaneto, G., Dell’Amico, M., & Toth, P. (1995). Exact solution of large scale asymmetric travelling salesman problems. ACM Transactions on Mathematical Software, 21(4), 394–409. CrossRefGoogle Scholar
  6. Cirasella, J., Johnson, D. S., McGeoch, L. A., & Zhang, W. (2001). The asymmetric traveling salesman problem: Algorithms, instance generators, and tests. In Springer lecture notes in computer science (Vol. 2153, pp. 32–59). Berlin: Springer. Google Scholar
  7. Clark, A. R. (2003). Optimization approximations for capacity constrained material requirements planning. International Journal of Production Economics, 84(2), 115–131. CrossRefGoogle Scholar
  8. Clark, A. R., & Clark, S. J. (2000). Rolling-horizon lot-sizing when setup times are sequence-dependent. International Journal of Production Research, 38(10), 2287–2308. CrossRefGoogle Scholar
  9. Dillenberger, C., Escudero, L. F., Wollensak, A., & Zhang, W. (1994). On practical resource allocation for production planning and scheduling with different setup products. European Journal of Operational Research, 5(2), 275–286. CrossRefGoogle Scholar
  10. Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—survey and extensions. European Journal of Operational Research, 99, 221–235. CrossRefGoogle Scholar
  11. Ferreira, D., Morabito, R., & Rangel, S. (2009). Solution approaches for the soft drink integrated production lot sizing and scheduling problem. European Journal of Operational Research, 196, 697–706. CrossRefGoogle Scholar
  12. Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. OR Spektrum, 19(1), 11–21. CrossRefGoogle Scholar
  13. Fourer, R., Gay, D. M., & Kernighan, B. W. (2003). AMPL—a modelling language for mathematical programming (2nd Ed.). N. Scituate: Duxbury Press. Google Scholar
  14. Frieze, A. M., & Dyer, M. E. (1990). On a patching algorithm for the random asymmetric travelling salesman problem. Mathematical Programming, 46, 361–378. CrossRefGoogle Scholar
  15. Frieze, A. M., Karp, R. M., & Reed, B. (1995). When is the assignment bound tight for the asymmetric traveling-salesman problem? SIAM Journal on Computing, 24(3), 484–493. CrossRefGoogle Scholar
  16. Glover, F., Gutin, G., Yeo, A., & Zverovich, A. (2001). Construction heuristics for the asymmetric tsp. European Journal of Operational Research, 129, 555–568. CrossRefGoogle Scholar
  17. Gupta, D., & Magnusson, T. (2005). The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Computers and Operations Research, 32(4), 727–747. CrossRefGoogle Scholar
  18. Ilog (2004). CPLEX 9.1 user’s manual, ILOG S.A.
  19. Jans, R., & Degraeve, Z. (2008). Modeling industrial lot sizing problems, a review. International Journal of Production Research, 46(6). Google Scholar
  20. Johnson, D. S., Gutin, G., McGeoch, L. A., Yeo, A., Zhang, W., & Zverovich, A. (2002). Experimental analysis of heuristics for the asymmetric travelling salesman problem—algorithms, instance generators and tests. In G. Gutin & A. P. Punnen (Eds.), The traveling salesman problem and its variations. Dordrecht: Kluwer. Google Scholar
  21. Junger, M., Reinelt, G., & Rinaldi, G. (1995). The traveling salesman problem. In M. O. Ball, T. L. Magnanti, C. L. Monma, & G. L. Nemhauser (Eds.), Handbooks in operations research and management science : Vol. 7. Network models (pp. 225–330). Amsterdam: North Holland. Chap. 4. CrossRefGoogle Scholar
  22. Kang, S., Malik, K., & Thomas, L. J. (1999). Lotsizing and scheduling on parallel machines with sequence-dependent setup costs. Management Science, 45(2), 273–289. CrossRefGoogle Scholar
  23. Karimi, B., Fatemi Ghomia, S. M. T., & Wilson, J. M. (2003). The capacitated lot sizing problem, a review of models and algorithms. Omega, 31, 365–378. CrossRefGoogle Scholar
  24. Karp, R. M. (1979). A patching algorithm for the nonsymmetric traveling-salesman problem. SIAM Journal on Computing, 8(4), 561–573. CrossRefGoogle Scholar
  25. Karp, R. M., & Steele, J. M. (1985). Probabilistic analysis of heuristics. In E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan, & D. B. Shmoys (Eds.), The traveling salesman problem—a guided tour of combinatorial optimization. Chichester: Wiley. Google Scholar
  26. Laporte, G. (1994). The travelling salesman problem, an overview of exact and approximate algorithms. European Journal of Operational Research, 59, 231–247. CrossRefGoogle Scholar
  27. Lawler, E. L., Lenstra, J. K., Rinnoy Kan, A. H. G., & Shmoys, D. B. (1985). The traveling salesman problem—a guided tour of combinatorial optimization. Chichester: Wiley. Google Scholar
  28. Luche, J. R. D., Morabito, R., & Pureza, V. (2009). Combining process selection and lot sizing models for the production scheduling of electrofused grains. Asia-Pacific Journal of Operations Research, 26(3). Google Scholar
  29. Meyr, H. (2000). Simultaneous lot-sizing and scheduling by combining local search with dual optimization. European Journal of Operational Research, 120, 311–326. CrossRefGoogle Scholar
  30. Nahmias, S. (1995). Production and operations analysis. Homewood: Irwin. Google Scholar
  31. Orman, A. J., & Williams, H. P. (2004). A survey of different integer programming formulations of the travelling salesman problem (Working paper LSEOR 04.67). London School of Economics, Deptartment of Operational Research, LSE, London. Google Scholar
  32. Pochet, Y., & Wolsey, L. A. (2006). Production planning by mixed integer programming. Berlin: Springer. Google Scholar
  33. Salomon, M., Solomon, M., Van Wassenhove, L. N., & Dumas, Y. (1997). Solving the discrete lot sizing and scheduling problem with sequence dependent set-up costs and set-up times using the travelling salesman problem with time windows. European Journal of Operational Research, 100, 494–513. CrossRefGoogle Scholar
  34. Smith-Daniels, V. L., & Smith-Daniels, D. E. (1986). A mixed integer programming model for lot sizing and sequencing packaging lines in the process industries. IIE Transactions, 18(3), 278–285. CrossRefGoogle Scholar
  35. Toledo, C. F. M., França, P. M., Morabito, R., & Kimms, A. (2009). A multi-population genetic algorithm to solve the synchronized and integrated two-level lot-sizing and scheduling problem. International Journal of Production Research, 47(11), 3097–3119. CrossRefGoogle Scholar
  36. Toso, E. A. V. (2008). Dimensionamento e seqüenciamento de lotes de produção na indústria de suplementos para nutrição animal. PhD thesis, Department of Production Engineering, Universidade Federal de São Carlos, Brazil. Complete text and data online at
  37. Toso, E. A. V., Morabito, R., & Clark, A. R. (2009). Lot-sizing and sequencing optimisation at an animal-feed plant. Computers and Industrial Engineering, 57(3), 813–821. CrossRefGoogle Scholar
  38. Wolsey, L. A. (1995). Progress with single-item lot-sizing. European Journal of Operational Research, 86, 395–401. CrossRefGoogle Scholar
  39. Wolsey, L. A. (1998). Integer programming. New York: Wiley. Google Scholar
  40. Zhang, W. (1997). A note on the complexity of the asymmetric travelling salesman problem. Operations Research Letters, 20, 31–38. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alistair R. Clark
    • 1
    Email author
  • Reinaldo Morabito
    • 2
  • Eli A. V. Toso
    • 3
  1. 1.Bristol Institute of TechnologyUniversity of the West of EnglandBristolUK
  2. 2.Production Engineering DepartmentUniversidade Federal de São CarlosSão CarlosBrazil
  3. 3.Production Engineering DepartmentUniversidade Federal de São CarlosSorocabaBrazil

Personalised recommendations