Skip to main content
Log in

Evaluation of seismicity and seismotectonics in the Alborz Mountains: insights from seismic parameters, Northern Iran

  • Research
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

The Alborz Mountains are among the areas exhibiting high tectonic and seismic activity in northern Iran. Studying key parameters of tectonic structures, including quantitative analysis and observational studies, in such active regions is essential to identify potential active faults and assess the consequent seismic hazards. This study focuses on seismicity and seismotectonics by analyzing seismic parameters, including b-value, mean seismic activity rate, earthquake recurrence time, seismic moment, and fractal dimension derived from micro and teleseismic data. The b-values vary between 0.6 and 1.1 in the tectonically active parts of the study area, corresponding with the reverse/thrust and strike-slip active faults. Large earthquakes might be prone to occur at 10–25 km depth because both catalogues show low b-values (b < 1.0) concentrations at this depth range. The high fractal dimension (> 1.5), high seismic activity rate, large seismic moment parameters, and its continuously increasing trend. Short recurrence periods (20–50 years) of M 6.5 events also emphasize the high seismic activity and high seismic hazard. On the other hand, the prevalence of low b-values is notably observed in areas encompassing densely populated cities such as Rasht, Lahijan, Amol, Babol, Sari, Behshahr, Gorgan, and the megacity of Tehran. Furthermore, we have identified asperities where the Gorgan Plain, the Khazar, and the Alamutrud Fault Zones are located. These findings emphasize the seismic hazard potential in the identified areas and urban centers within the study area. Therefore, particular attention should be directed towards areas exhibiting low b-values when assessing and mitigating seismic hazards. It underscores the necessity for additional focus on seismic hazard assessment and implementation of mitigation strategies in the Alborz region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The earthquake catalogues data utilized in this study can be obtained from the Iranian Seismological Center, Institute of Geophysics, University of Tehran website (http://irsc.ut.ac.ir/bulletin.php) and the International Seismological Center website (http://www.isc.ac.uk/iscbulletin/search/catalogue/). In addition, information regarding the software used is available at http://www.seismo.ethz.ch/en/research-and-teaching/products-software/software/ZMAP/.

References

  • Abdi F, Mirzaei N, Shabani E (2013) Ground-motion scenarios consistent with PSH deaggregation for Tehran, capital city of Iran. Nat Hazards Earth Syst Sci. https://doi.org/10.5194/nhess-13-679-2013

  • Agard P, Omrani J, Jolivet J et al (2011) Zagros orogeny: a subduction-dominated process. Geol Mag 148:692–725

    Article  Google Scholar 

  • Agh Atabai M, Mirabedini MS (2014) Temporal variation of seismicity parameters in the central Alborz, Iran. Acta Geophy. https://doi.org/10.2478/s11600-013-0172-7

  • Agh Atabai M, Tourani M (2018) Seismotectonic in the west of Golestan Province, east of Southern Caspian Basin. Iran Geo J 11(45):71–85

    Google Scholar 

  • Aghanabati A (2004) Geology of Iran. Geological Survey of Iran, Tehran, pp 586

  • Ahadov B, Öztürk S (2022) Spatial variations of fundamental seismotectonic parameters for the earthquake occurrences in the Eastern Mediterranean and Caucasus. Nat Hazards. https://doi.org/10.1007/s11069-021-05170-1

    Article  Google Scholar 

  • Ahmed N, Ghazi S, Khalid P (2016) On the variation of b-value for Karachi region. Pakistan through Gumbel’s Extreme Distribution Method Acta Geod Geophys. https://doi.org/10.1007/s40328-015-0122-8

    Article  Google Scholar 

  • Aki K (1965) Maximum likelihood estimate of b in the formula logN = a-bM and its confidence limits. Bull Earthq Res Inst UnivTokyo 43:237–239

    Google Scholar 

  • Aki K (1984) Asperities, barriers, characteristic earthquakes and strong motion prediction. J Geophys Res 89:5867–5872

    Article  Google Scholar 

  • Aki K (1981) A Probabilistic Synthesis of Precursory Phenomena. In: Simpson DW, Richards PG (ed) Earthquake Prediction: An International Review, Maurice Ewing Ser. 4, AGU, Washington DC, pp 566–574 https://doi.org/10.1029/ME004p0566

  • Alavi M (1991) Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran. Geo Soc Am Bull. https://doi.org/10.1130/0016-7606(1991)103%3c0983:SASCOT%3e2.3.CO;2

    Article  Google Scholar 

  • Alavi M (1992) Thrust tectonics of the Binalood region, NE Iran. Tectonics 11:360–379

    Article  Google Scholar 

  • Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics 229:211–238

    Article  Google Scholar 

  • Alavi M (1996) Tectonostratigraphic synthesis and structural style of the Alborz Mountain system in northern Iran. J Geody 21:1–33

    Article  Google Scholar 

  • Alkan H, Öztürk S, Akkaya İ (2023) Seismic hazard implications in and around the Yedisu Seismic Gap (Eastern Turkey) based on the Coulomb stress changes, b-values, and S-wave velocity. Pure Appl Geophys. https://doi.org/10.1007/s00024-023-03342-7

    Article  Google Scholar 

  • Allen MB, Vincent SJ, Alsop GI et al (2003) Late Cenozoic deformation in the South Caspian region: effects of a rigid basement block within a collision zone. Tectonophysics 366:223–239

    Article  Google Scholar 

  • Allen M, Jackson J, Walker R (2004) Late Cenozoic reorganization of the Arabia Eurasia collision and the comparison of short-term and long-term deformation rates. Tectonics. https://doi.org/10.1029/2003TC001530

    Article  Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Persian earthquakes. Cambridge Univ, Cambridge

    Google Scholar 

  • Amelung F, King G (1997) Earthquake scaling laws for creeping and non-creeping faults. Geophys Res Lett 24:507–510

    Article  Google Scholar 

  • Arroyo-Solórzano M, Linkimer L (2021) Spatial variability of the b-value and seismic potential in Costa Rica. Tectonophysics. https://doi.org/10.1016/j.tecto.2021.228951

  • Ashtari Jafari M (2013) Spatial distribution of seismicity parameters in the Persian Plateau. Earth Plan Spa. https://doi.org/10.5047/eps.2013.02.006

    Article  Google Scholar 

  • Bayrak Y, Yılmaztürk A, Öztürk S (2002) Lateral variations of the modal (a/b) values for the different regions of the world. J Geodyn. https://doi.org/10.1016/S0264-3707(02)00037-6

    Article  Google Scholar 

  • Bayrak Y, Özturk S, Cinar H et al (2009) Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Eng Geol 105:200–210

    Article  Google Scholar 

  • Bayrak Y, Yadav RBS, Kalafat D et al (2013) Seismogensis and earthquake triggering during the Van (Turkey) 2011 seismic sequence. Tectonophysics. https://doi.org/10.1016/j.tecto.2013.05.008

    Article  Google Scholar 

  • Bayrak Y, Çınar H, Bayrak E (2011) The North Anatolian Fault Zone: an Evaluation of Earthquake Hazard Parameters. In: Schattner U (ed) New Frontiers in Tectonic Research - At the Midst of Plate Convergence, pp 269–288 https://doi.org/10.5772/17597

  • Beall A, Van den Ende M, Ampuero JP et al (2022) Linking earthquake magnitude frequency statistics and stress in visco-frictional fault zone models. Geophys Res Lett. https://doi.org/10.1029/2022GL099247

    Article  Google Scholar 

  • Beitollahi A, Motamed P (2010) Calculation of seismicity parameters for central Alborz region. Res Bull Seis Earthq Eng 13(3):1–8

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic 1047 evolution of Iran. Cana J Ear Sci 18:1764–1766

    Article  Google Scholar 

  • Berberian M, Walker R (2010) The Rudbar Mw 7.3 earthquake of 1990 June 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz’, Iran. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2010.04705.x

  • Berberian M, Walker R (2010) The Rudbar Mw 7.3 earthquake of 20; seismotectonics, coseismic and geomorphic displacements, and historic earthquakes of the western ‘High-Alborz.’ Iran Geophys J Int. https://doi.org/10.1111/j.1365-246X.2010.04705.x

    Article  Google Scholar 

  • Berberian M, Yeats RS (1999) Patterns of historical earthquake rupture in the Iranian Plateau. Bull Seism Soc Am 89(1):120–139

    Article  Google Scholar 

  • Berberian M, Yeats RS (2001) Contribution of Archeological Data to Studies of Earthquake History in the Iranian Plateau. J Struct Geol. https://doi.org/10.1016/S0191-8141(00)00115-2

    Article  Google Scholar 

  • Berberian M, Qorashi M, Jackson JA et al (1992) The Rudbar-Tarom earthquake of June 20, 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bull Seism Soc Am 82:1726–1755

    Google Scholar 

  • Bhattacharya PM, Kayal JR, Baruah S, Arefiev SS (2010) Earthquake source zones in northeast India: Seismic tomography, fractal dimension and b-value mapping. Pure Appl Geophys 167:999–1012

    Article  Google Scholar 

  • Chandrani S, Bhattacharya PM, Chadha RK (2008) Seismicity in the Koyna-Warna Reservoir Site in Western India: Fractal and b- Value Mapping. Bull Seism Soc Am 98:476–482

    Article  Google Scholar 

  • Chen X, Li Y, Chen L (2022) The characteristics of the b-value anomalies preceding the 2004 Mw9.0 Sumatra earthquake. Geom Nat Hazards and Risk. https://doi.org/10.1080/19475705.2022.2029582

  • Chiba K, Shimizu H (2018) Spatial and temporal distributions of b-value in and around Shinmoe-dake, Kirishima volcano, Japan. Earth Plan Spa. https://doi.org/10.1186/s40623-018-0892-7

  • Djamour Y, Vernant P, Bayer R et al (2010) GPS and Gravity Constraints on Continental Deformation in the Alborz Mountain Range, Iran. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2010.04811.x

  • Ebrahimi MR, Tatar M (2012) Fractal distribution of induced seismicity in Masjed Soleyman dam site (South West of Iran). J Earth Spa Phys 38(2):15–27

    Google Scholar 

  • El-Isa ZH, Eaton DW (2014) Spatiotemporal variations in the b-value of earthquake magnitude–frequency distributions: classification and causes. Tectonophysics. https://doi.org/10.1016/j.tecto.2013.12.001

    Article  Google Scholar 

  • Enescu B, Enescu D, Ito K (2011) Values of b and p: their variations and relation to physical processes for earthquakes in Japan and Romania. Rom J Phys 56:590–610

    CAS  Google Scholar 

  • Engdahl E, Jackson J, Myers S et al (2006) Relocation and assessment of seismicity in the Ira region. Geophys J Int 167:761–788

    Article  Google Scholar 

  • Farrell J, Husen S, Smith RB (2009) Earthquake swarm and b-value characterization of the Yellowstone volcano-tectonic system. J Volcanol Geotherm Res. https://doi.org/10.1016/j.jvolgeores.2009.08.008

    Article  Google Scholar 

  • Frohlich C, Davis S (1993) Teleseismic b-values; or, much ado about 1.0. J Geophys Res. https://doi.org/10.1029/92JB01891

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seism Soc Am. https://doi.org/10.1785/BSSA0640051363

    Article  Google Scholar 

  • Gerstenberger M, Wiemer S, Giardini D (2001) A systematic test of the hypothesis that the b value varies with depth in California. Geophys Res Lett. https://doi.org/10.1029/2000GL012026

    Article  Google Scholar 

  • Gerstenberger M, Wiemer S, Jones LM, Reasenberg PA (2005) Real-time forecasts of tomorrow’s earthquakes in California. Nature 435:328–331

    Article  CAS  Google Scholar 

  • Gheitanchi MR (2005) Source characteristics of the 28th May 2004 Baladeh-Kojour destructive earthquake in Central Alborz, revealed from far field waveform data. Earth Sciences 57:54–163

    Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica. https://doi.org/10.1016/0167-2789(83)90298-1

    Article  Google Scholar 

  • Guest B, Axen GJ, Lam PS, Hassanzadeh J (2006) Late Cenozoic shortening in the west-central Alborz Mountains, northern Iran, by combined conjugate strike-slip and thin-skinned deformation. Geosphere 2(1):35–52

    Article  Google Scholar 

  • Gulia L, Wiemer S (2010) The influence of tectonic regimes on the earthquake size distribution: A case study for Italy. Geophys Res Lett. https://doi.org/10.1029/2010GL043066

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquake in California. Bull Seism Soc Am 34(4):185–188

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena. Princeton, New Jersey, USA

    Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Hauksson E, Jones L, Hutton K (2002) The 1999 Mw 7.1 Hector Mine, California, earthquake sequence: complex conjugate strike-slip faulting. Bull seism Soc Am 92(4):1154

    Article  Google Scholar 

  • Heidbach O, Rajabi M, Cui X et al (2018) The World Stress Map database release 2016. Crustal stress pattern across scales. Tectonophysics. https://doi.org/10.1016/j.tecto.2018.07.007

  • Hessami K, Mobayyen F, Tabassi H (2013) The Map of Active Faults of Iran. International Institute of Earthquake Engineering and Seismology (IIEES), Tehran

  • Hirata T (1989a) Correlation between the b-value and the fractal dimension of earthquakes. J Geoph Res 94(B6):7507–7514

    Article  Google Scholar 

  • Hirata T (1989b) Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales. Pure Appl Geophys 131:157–170

    Article  Google Scholar 

  • Hollingsworth J, Nazari H, Ritz JF et al (2010) Active tectonics of the east Alborz mountains, NE Iran: Rupture of the left-lateral Astaneh fault system during the great 856 AD Qumis earthquake. J Geophys Res Solid Earth. https://doi.org/10.1029/2009JB007185

    Article  Google Scholar 

  • Hussain H, Shuangxi Z, Usman M, Abid M (2020) Spatial Variation of b-value and Their Relationship with the Fault Blocks in the Western Part of the Tibetan Plateau and Its Surrounding Area. Entropy. https://doi.org/10.3390/e22091016

    Article  Google Scholar 

  • Idziak ÓA, Teper L (1996) Fractal Dimension of Faults Network in the Upper Silesian Coal Basin (Poland): Preliminary Studies. Pure Appl Geophys 147:239–247. https://doi.org/10.1007/BF00877480

  • IRSC, 2022- Iranian Seismological Center, Institute of Geophysics, University of Tehran

  • ISC, 2021- International Seismological Center, Newbury, Berkshire, United Kingdom

  • Isik V, Saber R, Caglayan A (2021) November 08, 2019 Turkmanchay earthquake (Mw 5.9) in NW Iran: an assessment of the earthquake using DInSAR time-series and field evidence. Nat Hazards. https://doi.org/10.1007/s11069-020-04439-1

  • Ivančić I, Herak D, Herak M et al (2018) Seimicity of Croatia in the period 2006–2015. Jeofizika. https://doi.org/10.15233/gfz.2018.35.2

  • Jackson J, Priestley K, Allen M, Berberian M (2002) Active tectonics of the south Caspian basin. Geophys J Int 148:214–245

    Google Scholar 

  • Javidfakhr B, Bellier O, Shabanian E et al (2011) Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): geodynamic implications for NNE Iran. J Geod. https://doi.org/10.1016/j.jog.2011.02.005

    Article  Google Scholar 

  • Jena R, Ghansar TAA, Pradhan B, Rai AK (2021) Estimation of fractal dimension and b-value of earthquakes in the Himalayan region. Arab J Geosci. https://doi.org/10.1007/s12517-021-07271-4

    Article  Google Scholar 

  • Jiu X, Glacidogna G (2011) Spatial variation of seismic b-values distribution in China. Appl Mech Mater 71–78:4819–4822

    Google Scholar 

  • Kagan Y (1999) Universality of the seismic moment-frequency relation. Pure Appl Geophys 155(2–4):537–573

    Article  Google Scholar 

  • Kagan Y (2002) Seismic moment distribution revisited: I. Statistical Results Geophys J Int 148:520–541

    Article  Google Scholar 

  • Kagan Y, Knopoff L (1980) Spatial-distribution of earthquakes: the 2-point correlation-function. Geophys J Int 62:303–320

    Article  Google Scholar 

  • Kalaneh S, Agh-Atabai M (2016) Spatial variation of earthquake hazard parameters in the Zagros fold and thrust belt. SW Iran. Nat Hazards. https://doi.org/10.1007/s11069-016-2227-y

  • Kamranzad F, Memarian H, Zare M (2020) Earthquake risk assessment for Tehran, Iran. Int J Geo Inf https://doi.org/10.3390/ijgi9070430

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res. https://doi.org/10.1029/JB082i020p02981

    Article  Google Scholar 

  • Kanamori H, Anderson DL, Heaton TH (1998) Frictional melting during the rupture of the 1994 Bolivian earthquake. Science 279(5352):839–842

    Article  CAS  Google Scholar 

  • Karimiparidari S, Zare M, Memarian H, Kijko A (2013) Iranian earthquakes, a uniform catalog with moment magnitudes. J Seismol. https://doi.org/10.1007/s10950-013-9360-9

    Article  Google Scholar 

  • Katsumata K (2006) Imaging the high b-value anomalies within the subducting Pacific plate in the Hokkaido corner. Earth Plan Spa 58:e49–e52

    Article  Google Scholar 

  • Khan PK (2005) Mapping of b-value beneath the Shillong Plateau. Gondwana Res 8:271–276

    Article  Google Scholar 

  • Khan P, Chakraborty PP (2007) The seismic b-value and its correlation with Bouguer gravity anomaly over the Shillong Plateau area: tectonic implications. J Asian Earth Sci 29:136–147

    Article  Google Scholar 

  • Kijko A, Sellevoll MA (1989) Estimation of earthquake hazard parameters from incomplete data files. Part I. Utilization of extreme and complete catalogs with different threshold magnitudes. Bull Seismol Soc Am 79:645–654

    Article  Google Scholar 

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from Incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82:120–134

    Google Scholar 

  • Kijko A, Retief SJP, Graham G (2002) Seismic hazard and risk assessment for Tulbagh, South Africa: part I-assessment of seismic hazard. Nat Hazards 26:175–201

    Article  Google Scholar 

  • King G (1983) The accommodation of large strains in the upper lithosphere of the Earth and other solids by self-similar fault systems: the geometrical origin of b-value. Pure Appl Geophys 121:761–815

    Article  Google Scholar 

  • Kowsari M, Eftekhari N, Yusefi Dadras E (2024) Uncertainty and sensitivity assessments on the inputs of probabilistic seismic hazard assessment: A case study of the North Tehran fault. Soil Dyn Earthq Eng. https://doi.org/10.1016/j.soildyn.2024.108558

    Article  Google Scholar 

  • Kumar S (2012) Seismicity in the NW Himalaya, India: fractal dimension, B-value mapping and temporal variations for hazards evaluation. Geosci Res 3:83–87

    CAS  Google Scholar 

  • Lamessa G, Mammo TK, Raghuvanshi T (2019) Homogenized earthquake catalog and b-value mapping for Ethiopia and its adjoining regions. Geoenviron Disasters. https://doi.org/10.1186/s40677-019-0131-y

    Article  Google Scholar 

  • Lewerissa R, Rumakey R, Syakur YA, Lapono L (2021) Completeness Magnitude (Mc) and b-value characteristics as important parameters for future seismic hazard assessment in the West Papua province Indonesia. Arab J Geosci. https://doi.org/10.1007/s12517-021-08885-4

    Article  Google Scholar 

  • Lin J, Sibueti J, Lee C, Hsu S, Klingelhoefer F (2007) Special variations in the frequency–magnitude distribution of earthquakes in the southwestern Okinawa trough. Earth Plan Spa 59:221–225

    Article  Google Scholar 

  • Lopez Casado C, Sanz de Galdano C, Delgado J, Peinado MA (1995) The b parameter in the Betic Cordillera, Rif and nearby sectors. Relations with the tectonics of the region. Tectonophysics. https://doi.org/10.1016/0040-1951(94)00278-H

  • Lowrie W (1997) Fundamentals of Geophysics. Cambridge Univ, Cambridge

    Google Scholar 

  • Mahdavian A (2013) Seismic zonation of Golestan Province. Sci Quar J Geosci 23:89

    Google Scholar 

  • Mattei M, Cifelli F, Alimohammadian H et al (2017) Oroclinal bending in the Alborz Mountains (northern Iran): new constraints on the age of South Caspian subduction and extrusion tectonics. Gondwana Res 42:13–28

    Article  Google Scholar 

  • McGarr A (1999) On relating apparent stress to the stress causing earthquake fault slip. J Geophys Res 104:3003–3011

    Article  Google Scholar 

  • McNutt SR (2005) Volcanic seismology. Annu Rev Earth Planet Sci. https://doi.org/10.1146/annurev.earth.33.092203.122459

    Article  Google Scholar 

  • Minakami T (1990) Prediction of volcanic eruptions. In: Gasparini P, Luongo G, Rapolla A (eds) Civetta L. Physical Volcanology Elsevier, Amsterdam, pp 1–27

    Google Scholar 

  • Mirabedini MS, Agh Atabai M (2015) Spatial variation of fractal parameters in the central Alborz. Iran Kharazmi J Earth Sci 16(42):57–70

    Google Scholar 

  • Mishra O, Kayal J, Chakrabortty G, Singh O, Ghosh D (2007) Aftershock investigation in the Andaman-Nicobar Islands of India and its seismotectonic implications. Bull Seism Soc Am 97(1A):S71

    Article  Google Scholar 

  • Mohammadi Nia A, Rashidi A, Khatib MM et al (2023) Seismic risk in Alborz: Insights from geological moment rate estimation and fault activity analysis. Appl Sci. https://doi.org/10.3390/app13106236

    Article  Google Scholar 

  • Mori J, Abercrombie RE (1997) Depth dependence of earthquake frequency–magnitude distributions in California: Implications for the rupture initiation. J Geophys Res 102(B7):15081–15090

    Article  Google Scholar 

  • Motaghi K, Hesami K, Tatar M (2010) Pattern recognition of major asperities using local recurrence time in Alborz Mountains, Northern Iran. J Seismol https://doi.org/10.1007/s10950-010-9201-z

  • Mousavi SM (2017) Spatial variation in the frequency-magnitude distribution of earthquakes under the tectonic framework in the Middle East. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2017.07.040

    Article  Google Scholar 

  • Mousavi-Bafrouei S H, Babaie Mahani A (2020) A comprehensive earthquake catalogue for the Iranian Plateau (400 B.C. to December 31, 2018). J Seismol https://doi.org/10.1007/s10950-020-09923-6

  • Mouthereau F, Lacombe O, Verges J (2012) Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics. https://doi.org/10.1016/j.tecto.2012.01.022

    Article  Google Scholar 

  • Murase K (2004) A characteristic change in fractal dimension prior to the 2003 Tokachi-oki earthquake (MJ=8.0), Hokkaido, northern Japan. Earth Plan Spa 56:401–405

    Article  Google Scholar 

  • Mӓntyniemi P, Kijko A, Retief P (2001) Parametric-historic procedure for seismic hazard assessment and its application to northern Europe. Bollettino Di Geofisica Teorica Ed Applicata 42:41–55

    Google Scholar 

  • Mӓntyniemi P, Marza VI, Kijko A, Retief P (2003) A new probabilistic seismic hazard analysis for the Vrancea (Romania) seismogenic zone. Nat Hazards 29:371–385

    Article  Google Scholar 

  • Nabavi MH (1976) An introduction to the geology of Iran. Geological Survey of Iran Press, Tehran, pp 109

  • Nakaya S (2006) Spatiotemporal variation in b value within the subducting slab prior to the 2003 Tokachi-oki earthquake (M 8.0) Japan. J Geophys Res 111:B03311. https://doi.org/10.1029/2005JB003658

  • Nanjo KZ, Hirata N, Obara K, Kasahara K (2012) Decade-scale decrease in b value prior to the M9-class 2011 Tohoku and 2004 Sumatra quakes. Geophys Res Lett. https://doi.org/10.1029/2012GL052997

    Article  Google Scholar 

  • Nazari H, Ritz JF, Burg JP et al (2021) Active tectonics along the Khazar fault (Alborz, Iran). J Asian Earth Sci https://doi.org/10.1016/j.jseaes.2021.104893

  • Nazari H, Ritz JF (2008) Neotectonics in Central Alborz. Geosciences 17(1):74–92

    Google Scholar 

  • Nemati M, Hollingsworth J, Zhan Zh et al (2013) Microseismicity and seismotectonics of the South Caspian Lowlands, NE Iran. Geophys J Int https://doi.org/10.1093/gji/ggs114

  • Nuannin P, Kulhanek O, Persson L (2005) Spatial and temporal b-value anomalies preceding the devastating off coast of NW Sumatra earthquake of December 26, 2004. Geophys Res Lett. https://doi.org/10.1029/2005GL022679

    Article  Google Scholar 

  • Nuannin P, Kulh-anek O, Persson L (2012) Variations of b-values preceding large earthquakes in the Andaman_Sumatra subduction zone. J Asian Earth Sci 61:237–242

    Article  Google Scholar 

  • Ogata Y (1988) Statistical models for earthquake occurrences. J Am Stat Assoc 83:9–27

    Article  Google Scholar 

  • Ogata Y, Imoto M, Katsura K (1991) 3-D spatial variation of b-values of magnitude-frequency distribution beneath the Kanto District. Japan Geophys J Int 104(1):135–146

    Article  Google Scholar 

  • Okal EA, Sweet JR (2007) Frequency-size distributions for intraplate earthquakes. Geolog Soc Am Spec Papers 425:59–71

    Google Scholar 

  • Öncel AO, Wyss M (2000) The major asperities of the 1999 Mw = 7.4 Izmit earthquake defined by the microseismicity of the two decades before it. Geophys J Int 143:501–506

    Article  Google Scholar 

  • Ormeni R, Hasimi A, Öztürk S, Como E (2023) Correlations between seismic b-value and heat flow density in Vlora-Lushnja-Elbasani-Dibra Fault Zone in Elbasani area, central Albania. BALTICA J on Geosciences. https://doi.org/10.5200/baltica.2023.2.7

    Article  Google Scholar 

  • Oveisi B, Sabour M, Sadeghi M, Heibati Z (2019) Seismotectonic map of Iran, Version I- mint/6294–5890. Ministry of Industry, Mine and Trade. Geol Surv Iran Seismotectonic Department, Tehran, Iran

  • Öztürk S, Şahin Ş (2019) A statistical space-time-magnitude analysis on the aftershocks occurrence of the July 21th, 2017 MW=6.5 Bodrum-Kos, Turkey, earthquake. J Asian Earth Sci https://doi.org/10.1016/j.jseaes.2018.10.008

  • Park SC, Mori J (2007) Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence. Am Geophys Union. https://doi.org/10.1029/2006JB004481

    Article  Google Scholar 

  • Peláez JA, Hamdache M, Henares J (2015) The 2012–2013 seismic swarm in the eastern Guadalquivir Basin (S Spain). Procedia Earth Planet Sci. https://doi.org/10.1016/j.proeps.2015.08.018

    Article  Google Scholar 

  • Pengxiang Z, Shaohong X, Jinlong S et al (2018) Spatial variation of b-value in coastal area of Guangdong. J Ocean Univ China. https://doi.org/10.1007/s11802-018-3457-2

    Article  Google Scholar 

  • Priestley K, Baker C, Jackson J (1994) Implications of earthquake focal mechanism data for the active tectonics of the South Caspian Basin and surrounding regions. Geophys J Int. https://doi.org/10.1111/j.1365-246X.1994.tb04679.x

    Article  Google Scholar 

  • Rashidi A, Derakhshani R (2022) Strain and moment rates from GPS and seismological data in Northern Iran: implications for an evaluation of stress trajectories and probabilistic fault rupture hazard. Remote Sensing. https://doi.org/10.3390/rs14092219

    Article  Google Scholar 

  • Rashidi A (2021) Geometric and kinematic characteristics of the Khazar and North Alborz Faults: Links to the structural evolution of the North Alborz-South Caspian boundary, Northern Iran. J Asian Earth Sci https://doi.org/10.1016/j.jseaes.2021.104755

  • Reasenberg PA (1985) Second-order moment of Central California seismicity, 1969–1982. J Geophys Res. https://doi.org/10.1029/JB090iB07p05479

    Article  Google Scholar 

  • Rigo A, Souriau A, Sylvander M (2018) Spatial variation of b-value and crustal stress in the Pyrenees. J Seismol. https://doi.org/10.1007/s10950-017-9709-6

    Article  Google Scholar 

  • Ritz JF, Nazari H, Ghassemi A et al (2006) Active transtention inside Central Alborz: A new insight into the Northern Iran-Southern Caspian geodynamics. Geology 34(6):477–480

    Article  Google Scholar 

  • Robert AMM, Letouzey J, Kavoosi MA et al (2014) Structural evolution of the Kopeh Dagh fold and thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Mar Pet Geol. https://doi.org/10.1016/j.marpetgeo.2014.05.002

    Article  Google Scholar 

  • Sahandi R (2013) Structural geology map of Iran, 1: 1,000,000 scale. Geol Surv Iran Press

  • Saichev A, Sornette D (2007) Theory of earthquake recurrence times. J Geophys Res. https://doi.org/10.1029/2006JB004536

    Article  Google Scholar 

  • Scholz CH (1968) The frequency-magnitude relation of micro fracturing in rock and its relation to earthquakes. Bull Seism Soc Am 58(1):399–415

    Article  Google Scholar 

  • Scholz CH (2015) On the stress dependence of the earthquake b value. Geophys Res Lett. https://doi.org/10.1002/2014GL062863

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S (2005) Earth science: Microseismicity data forecast rupture area. Nature. https://doi.org/10.1038/4341086a

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature. https://doi.org/10.1038/nature040944341086a

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2004) Earthquake statistics at Parkfield: 1. Stationarity of b values. J Geophys Res https://doi.org/10.1029/2004JB003234

  • Scordilis EM (2006) Empirical global relations converting MS and mb to moment magnitude. J Seismol. https://doi.org/10.1007/s10950-006-9012-4

    Article  Google Scholar 

  • Senatorski P (2020) Gutenberg-Richter’s b value and earthquake asperite models. Pure Appl Geophys. https://doi.org/10.1007/s00024-019-02385-z

    Article  Google Scholar 

  • Shanker D, Sharma ML (1998) Estimation of seismic hazard parameters for the Himalayas and its vicinity from complete data files. Pure Appl Geophys 152:267–279

    Article  Google Scholar 

  • Shi Y, Bolt B (1982) The standard error of the magnitude–frequency b value. Bull Seismol Soc Am 72(5):1677–1687

    Article  Google Scholar 

  • Singh C (2016) Spatial variation of seismic b-value across the NW Himalaya. Geom Nat Haz Risk. https://doi.org/10.1080/19475705.2014.941951

    Article  Google Scholar 

  • Singh C, Singh A, Chadha RK (2009) Fractal and b-value mapping in eastern Himalaya and southern Tibet. Bull Seism Soc Am 99:3529–3533

    Article  Google Scholar 

  • Smirnov BV (1995) Recurrence of Earthquakes and Parameters of Seismic Regime. Vul Seismol 3:59–70

    Google Scholar 

  • Smith WD (1981) The b-value as an earthquake precursor. Nature 289(5794):136–139

    Article  Google Scholar 

  • Sornette D (2004) Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization and Disorder: Concepts and Tools, 2nd edn. Springer, Berlin

    Google Scholar 

  • Sornette A, Sornette D (1999) Renormalization of earthquake aftershocks. Geophys Res Lett 6(13):1981–1984

    Article  Google Scholar 

  • Stocklin J (1974) Possible ancient continental margins in Iran. In: Burke CA, Drake CL (ed) The geology of continental margins, Springer, New York. https://doi.org/10.1007/978-3-662-01141-6_64

  • Tal Y, Hager BH (2015) An empirical study of the distribution of earthquakes with respect to rock type and depth. Geophys Res Lett. https://doi.org/10.1002/2015GL064934

    Article  Google Scholar 

  • Tatar M, Jackson J, Hatzfeld D, Bergman E (2007) The 2004 May 28 Baladeh earthquake (Mw 6.2) in the Alborz, Iran: overthrusting the South Caspian Basin margin, partitioning of oblique convergence and the seismic hazard of Tehran. Geophys J Int https://doi.org/10.1111/j.1365-246X.2007.03386.x

  • Tchalenko JS (1974) Recent destructive earthquakes in the central Alborz. Geol Surv Iran 29:97–116

    Google Scholar 

  • Tormann T, Wiemer S, Hardebeck JL (2012) Earthquake recurrence models fail when earthquakes fail to reset the stress field. Geophy Res Lett. https://doi.org/10.1029/2012GL052913

    Article  Google Scholar 

  • Tourani M, Saber R, Isik V, Caglayan A, Chitea F (2023) Evaluation of relative tectonic activity in the eastern part of Khazar Fault Zone, north Iran. In: Candansayar ME, Soupios P, Arıcan C (eds) Eurasia geoscience congress and exhibition, 1st edn. Antalya, Türkiye, pp 25–30

  • Tsapanos TM (2001) Evaluation of the seismic hazard parameters for selected regions of the world: the maximum regional magnitude. Ann Geofis 44:69–79

    Google Scholar 

  • Turcotte DL (1989) Fractals in geology and geophysics. Pure Appl Geophys 131:171–196

    Article  Google Scholar 

  • UNAVCO (2021) https://www.unavco.org/software/visualization/GPS-Velocity-Viewer/GPS-Velocity-Viewer.html

  • Utkucu M, Budakoğlu E, Durmuş H (2011) A discussion on the Seismicity and Seismic Hazard of the Marmara Region (NW Turkey). Bull Earth Sci App and Res Cen Hacettepe Unive 32(3):187–212

    Google Scholar 

  • Vernant P, Nilforoushan F, Chéry J et al (2004) Deciphering oblique shortening of central Alborz in Iran using geodetic data. Planet Sci Lett. https://doi.org/10.1016/j.epsl.2004.04.017

    Article  Google Scholar 

  • Walker R, Jackson J (2004) Active Tectonics and Late Cenozoic Strain Distribution in Central and Eastern Iran. Tectonics. https://doi.org/10.1029/2003TC001529

    Article  Google Scholar 

  • Wason HR, Sharma ML, Khan PK et al (2002) Analysis of aftershocks of the Chamoli earthquake of March 29, 1999, using broadband seismic data. J Himal Geol 23:7–18

    Google Scholar 

  • Wech A, Kenneth W, Creager C, Houston H, Vidale J (2010) An earthquake-like magnitude–frequency distribution of slow slip in northern Cascadia. Geophys Res Lett 37:L22310

    Article  Google Scholar 

  • Westerhaus M, Wyss M, Yilmaz R, Zschau J (2002) Correlating variations of b values and crustal deformations during the 1990s may have pinpointed the rupture initiation of the Mw=7.4 Izmit earthquake of (1999s) August 17. Geophys J Int 148(1):139–152

    Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett. https://doi.org/10.1785/gssrl.72.3.373

    Article  Google Scholar 

  • Wiemer S, Benoit JP (1996) Mapping the b-value anomaly at 100 km depth in the Alaska and New Zealand subduction zones. Geophy Res Lett. https://doi.org/10.1029/96GL01233

    Article  Google Scholar 

  • Wiemer S, Katsumata K (1999) Spatial variability of seismicity parameters in aftershock zones. J Geophys Res 104:13135–13151

    Article  Google Scholar 

  • Wiemer S, Wyss M (1997) Mapping the frequency magnitude distribution in asperities: an improved technique to calculate recurrence times. J Geophys Res 102:15115–15128

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the Western United States, and Japan. Bull Seism Soc Am. https://doi.org/10.1785/0119990114

    Article  Google Scholar 

  • Wiemer S, Wyss M (2002) Mapping spatial variability of the frequency-magnitude distribution of earthquakes. Adv Geophys. https://doi.org/10.1016/S0065-2687(02)80007-3

    Article  Google Scholar 

  • Wiemer S, McNutt SR, Wyss M (1998) Temporal and three-dimensional spatial analysis of the frequency- magnitude distribution near Long Valley caldera, California. Geophys J Int 134:409–421

    Article  Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake cataloques: Estimation the magnitude of completeness and its uncertainty. Bull Seism Soc Am. https://doi.org/10.1785/012040007

    Article  Google Scholar 

  • Wyss M (1973) Towards a physical understanding of the earthquake frequency distribution. Geophys J Int 31(4):341–359

    Article  Google Scholar 

  • Wyss M (1997) Second round of evaluation of proposed earthquake precursors. Pure App Geophys 149:3–16

    Article  Google Scholar 

  • Wyss M, Matsumura S (2002) Most likely locations of large earthquakes in the Kanto and Tokai areas, Japan, based on the local recurrence times. Phys Earth and Planet Inter 131:173–184

    Article  Google Scholar 

  • Wyss M, Schorlemmer D, Wiemer S (2000) Mapping asperities by minima of local recurrence time: The San Jacinto-Elsinore fault zones. J Geophys Res 105:7829–7844

    Article  Google Scholar 

  • Wyss M, Sammis CG, Nadeau RM, Wiemer S (2004) Fractal dimension and b-value on creeping and locked patches of the San-Andreas fault near Parkfield, California. Bull Seism Soc Am 94:410–421

    Article  Google Scholar 

  • Xie W, Hattori K, Han P (2019) Temporal variation and statistical assessment of the b value off the Pacific Coast of Tokachi, Hokkaido, Japan. Entropy https://doi.org/10.3390/e21030249

  • Yadav RBS, Gahalaut VK, Chopra S, Shan B (2012a) Tectonic implications and seismicity triggering during the 2008 Baluchistan, Pakistan earthquake sequence. J Asian Earth Sci 45(2):167–178

    Article  Google Scholar 

  • Yadav RBS, Bayrak Y, Tripathi JN, Chopra S, Singh AP, Bayrak E (2012b) A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions. Pure Appl Geophys 169:1619–1639

    Article  Google Scholar 

  • Zamani A, Agh Atabai M (2009) Temporal characteristics of seismicity in the Alborz and Zagros regions of Iran, using a multifractal approach. J Geodyn. https://doi.org/10.1016/j.jog.2009.01.003

    Article  Google Scholar 

  • Zanchi A, Berra F, Mattei M, Ghassemi MR, Sabouri J (2006) Inversion tectonics in central Alborz. Iran J Struct Geol 20:1–15

    Google Scholar 

  • Zanchi A, Zanchetta S, Balini M, Ghassemi MR (2016) Oblique convergence during the Cimmerian collision: evidence from the Triassic Aghdarband Basin, NE Iran. Gondwana Res https://doi.org/10.1016/j.gr.2015.11.008

  • Zolfaghari MR, Peyghaleh E (2016) Development of optimization-based probabilistic earthquake scenarios for the city of Tehran. Comput Geosci. https://doi.org/10.1016/j.cageo.2015.10.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the editors and anonymous reviewers for their careful reviews, constructive comments, and suggestions, which improved the manuscript. The authors dedicate this study to the Department of Geological Engineering (Ankara Geology) on the occasion of its 90th anniversary in education (1934-2024).

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MT, VI, RS, AC and FC. The first draft of the manuscript was written by MT and VI, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marjan Tourani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tourani, M., Isik, V., Saber, R. et al. Evaluation of seismicity and seismotectonics in the Alborz Mountains: insights from seismic parameters, Northern Iran. J Seismol 28, 675–706 (2024). https://doi.org/10.1007/s10950-024-10218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-024-10218-3

Keywords

Navigation