Skip to main content
Log in

An investigation of regional variations of coda wave attenuation in western Tibet

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Regional variations of coda wave attenuation (\({Q}_{c}^{-1}\)) have been analyzed for western Tibet using single isotropic scattering model. A total of 628 local earthquakes, having a source-receiver distance less than 200 km recorded at the Y2 network of broadband stations during 2007–2011, are used for this analysis. All the events are crustal having maximum hypocentral depth up to 40 km. The estimation of \({Q}_{c}^{-1}\) is made at five different frequencies centered at 1.5, 3, 6, 12, and 18 Hz through lapse time windows from 30 to 70 s with an increment of 10 s starting at 1.2 times of secondary wave arrival time. We find a strong frequency-dependent nature of \({Q}_{c}^{-1}\) in this region, which may demonstrate that the medium is highly heterogeneous and tectonically very active. The regional variations of \({Q}_{c}^{-1}\) across the whole region have been performed, and we find a marked contrast across the Karakoram fault (KKF) at different frequencies and lapse time windows, which are consistent with the geotectonic diversity of the region. \({Q}_{0c}^{-1} ({Q}_{c}^{-1} \text {at 1 Hz})\) and frequency-dependent parameter (nc) for each station are also estimated using the power law relation \({Q}_{c}^{-1} = {Q}_{0c}^{-1} f^{-n_{c}}\). There is a tendency to increase nc with increasing observed \({Q}_{0c}^{-1}\) values, and vice versa. Variations of \({Q}_{0c}^{-1}\) at different lapse time windows and its corresponding apparent depths are also examined. We have observed a certain rise in \({Q}_{0c}^{-1}\) values at a 60-s lapse time window which may be due to the change in velocities, temperature, rock composition variations, and strong heterogeneity in the lithospheric mantle. The obtained values in this study are also found to be well compared with other results reported globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdel-Fattah AK, Morsy M, El-Hady S, Kim K, Sami M (2008) Intrinsic and scattering attenuation in the crust of the Abu Dabbab area in the eastern desert of Egypt. Phys Earth Planet Inter 168(1):103–112

    Google Scholar 

  • Aki K (1969) Analysis of the seismic coda of local earthquakes as scattered waves. J Geophys Res 74(2):615–631

    Google Scholar 

  • Aki K (1980) Scattering and attenuation of shear waves in the lithosphere. J Geophys Res Solid Earth 85(B11):6496–6504

    Google Scholar 

  • Aki K (1985) Theory of earthquake prediction with special reference to monitoring of the quality factor of lithosphere by the coda method. In: Practical approaches to earthquake prediction and warning, Springer, pp 219–230

  • Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80(23):3322–3342

    Google Scholar 

  • Akinci A (2000) Eyidoǧan H. Scattering and anelastic attenuation of seismic energy in the vicinity of north A,natolian fault zone, eastern Turkey. Physics of the Earth and Planetary Interiors 122:229–239

    Google Scholar 

  • Akinci A, Taktak A, Ergintav S (1994) Attenuation of coda waves in Western Anatolia. Phys Earth Planet Inter 87:155–165

    Google Scholar 

  • Ambeh W, Fairhead J (1989) Coda Q estimates in the Mount Cameroon volcanic region, West Africa. Bull Seismol Soc Am 79(5):1589–1600

    Google Scholar 

  • Ambeh W, Lynch L (1993) Coda Q in the eastern Caribbean, West Indies. Geophys J Int 112 (3):507–516

    Google Scholar 

  • Atkinson GM, Boore DM (1995) Ground-motion relations for eastern North America. Bull Seismol Soc Am 85(1):17–30

    Google Scholar 

  • Bai Z, Zhang S, Braitenberg C (2013) Crustal density structure from 3D gravity modeling beneath Himalaya and Lhasa blocks, Tibet. J Asian Earth Sci 78:301–317

    Google Scholar 

  • Baruah S, Hazarika D, Kalita A, Goswami S (2010) Intrinsic and scattering attenuation in Chedrang Fault and its vicinity–the rupture area of Great Assam earthquake of 12 June 1897 (M = 8.7). Curr Sci 775–784

  • Basuyau C, Diament M, Tiberi C, Hetényi G, Vergne J, Peyrefitte A (2013) Joint inversion of teleseismic and GOCE gravity data: application to the Himalayas. Geophys J Int 193(1):149–160

    Google Scholar 

  • Biswas R, Singh C (2019) Lateral variation of crustal attenuation properties from southern Tibet to eastern Nepal Himalaya. Geophys J Int 217(1):257–270

    Google Scholar 

  • Biswas R, Singh C (2020) Attenuation of high frequency body waves in the crust of western Tibet. Phys Earth Planet Inter 298:106323

    Google Scholar 

  • Bora N, Biswas R, Dobrynina AA (2018) Regional variation of coda Q in Kopili fault zone of northeast India and its implications. Tectonophysics 722:235–248

    Google Scholar 

  • Calvet M, Sylvander M, Margerin L, Villaseñor A (2013) Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: coda Q and peak delay time analysis. Tectonophysics 608:428–439

    Google Scholar 

  • Canas J, Pujades L, Blanco M, Soler V, Carracedo J (1995) Coda-Q distribution in the Canary Islands. Tectonophysics 246(4):245–261

    Google Scholar 

  • Carcolé E, Sato H (2010) Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time Window Analysis of Hi-net data. Geophys J Int 180(1):268–290

    Google Scholar 

  • Chen M, Niu F, Tromp J, Lenardic A, Lee CTA, Cao W, Ribeiro J (2017) Lithospheric foundering and underthrusting imaged beneath Tibet. Nature communications 8:15659

    Google Scholar 

  • Christensen NI (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones. J Geophys Res Solid Earth 84(B12):6849–6857

    Google Scholar 

  • Chung JK, Chen YL, Shin TC (2009) Spatial distribution of coda Q estimated from local earthquakes in Taiwan area. Earth Planets Space 61(9):1077–1088

    Google Scholar 

  • Das R, Mukhopadhyay S, Singh RK, Baidya PR (2018) Lapse time and frequency-dependent coda wave attenuation for Delhi and its surrounding regions. Tectonophysics 738:51–63

    Google Scholar 

  • De Siena L, Thomas C, Waite GP, Moran SC, Klemme S (2014) Attenuation and scattering tomography of the deep plumbing system of mount st. helens. J Geophys Res Solid Earth 119(11):8223–8238

    Google Scholar 

  • Del Pezzo E, Allotta R, Patane D (1990) Dependence of qc (CODA Q) on coda duration time interval: model or depth effect? Bull Seismol Soc Am 80(4):1028–1033

    Google Scholar 

  • DeMets C, Gordon RG, Argus D, Stein S (1990) Current plate motions. Geophys J Int 101 (2):425–478

    Google Scholar 

  • Dobrynina AA, Sankov VA, Chechelnitsky VV, Déverchère J (2016) Spatial changes of seismic attenuation and multiscale geological heterogeneity in the Baikal Rift and surroundings from analysis of coda waves. Tectonophysics 675:50–68

    Google Scholar 

  • Farrokhi M, Hamzehloo H, Rahimi H, Zadeh MA (2016) Separation of intrinsic and scattering attenuation in the crust of central and eastern Alborz region, Iran. Phys Earth Planet Inter 253:88–96

    Google Scholar 

  • Frankel A, Wennerberg L (1987) Energy-flux model of seismic coda: separation of scattering and intrinsic attenuation. Bull Seismol Soc Am 77(4):1223–1251

    Google Scholar 

  • Gao R, Lu Z, Klemperer SL, Wang H, Dong S, Li W, Li H (2016) Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya. Nat Geosci 9(7):555

    Google Scholar 

  • Gholamzadeh A, Rahimi H, Yaminifard F (2013) Spatial and temporal variation of coda-wave attenuation in the Faryab region, southeast of the Sanandaj–Sirjan zone, using aftershocks of the Tiab earthquake of 28 February 2006. Bull Seismol Soc Am 104(1):529–539

    Google Scholar 

  • Giampiccolo E, Tuvè T (2018) Regionalization and dependence of coda Q on frequency and lapse time in the seismically active Peloritani region (northeastern Sicily, Italy). J Seismol 22(4):1059–1074

    Google Scholar 

  • Giampiccolo E, Tusa G, Langer H, Gresta S (2002) Attenuation in southeastern Sicily (Italy) by applying different coda methods. J Seismol 6(4):487–501

    Google Scholar 

  • Gilligan A, Priestley KF, Roecker SW, Levin V, Rai S (2015) The crustal structure of the western Himalayas and Tibet. J geophys Res Solid Earth 120:3946–3964

    Google Scholar 

  • Gupta AK, Sutar AK, Chopra S, Kumar S, Rastogi B (2012) Attenuation characteristics of coda waves in Mainland Gujarat (India). Tectonophysics 530:264–271

    Google Scholar 

  • Gupta S, Singh V, Kumar A (1995) Attenuation of coda waves in the Garhwal Himalaya, India. Phys Earth Planet Inter 87(3-4):247–253

    Google Scholar 

  • Havskov J, Ottemöller L (2005) The SEISAN earthquake analysis software for the Windows, Solaris, Linux and Macosx. University of Bergen, Bergen. Norway

  • Havskov J, Malone S, McClurg D, Crosson R (1989) Coda Q for the state of Washington. Bull Seismol Soc Am 79(4):1024–1038

    Google Scholar 

  • Hazarika D, Baruah S, Gogoi NK (2009) Attenuation of coda waves in the Northeastern Region of India. J Seismol 13(1):141–160

    Google Scholar 

  • Hazarika P, Kumar MR, Kumar D (2013) Attenuation character of seismic waves in Sikkim Himalaya. Geophys J Int 195:544–557

    Google Scholar 

  • Hoke L, Lamb S, Hilton DR, Poreda RJ (2000) Southern limit of mantle-derived geothermal helium emissions in Tibet: implications for lithospheric structure. Earth Planet Sci Lett 180(3-4):297–308

    Google Scholar 

  • Ibanez J, Del Pezzo E, De Miguel F, Herraiz M, Alguacil G, Morales J (1990) Depth-dependent seismic attenuation in the Granada zone (Southern Spain). Bull Seismol Soc Am 80 (5):1232–1244

    Google Scholar 

  • Jaiswal N, Singh C, Singh A (2020) Crustal structure of western Tibet revealed by Lg attenuation tomography. Tectonophysics 775:228245

    Google Scholar 

  • Jin A, Aki K (1988) Spatial and temporal correlation between coda Q and seismicity in China. Bull Seismol Soc Am 78(2):741–769

    Google Scholar 

  • Jin A, Aki K (2005) High-resolution maps of Coda Q in Japan and their interpretation by the brittle-ductile interaction hypothesis. Earth Planets Space 57(5):403–409

    Google Scholar 

  • Jin Y, McNutt MK, Ys Zhu (1996) Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. J Geophys Res Solid Earth 101(B5):11275–11290

    Google Scholar 

  • Kapp P, Murphy MA, Yin A, Harrison TM, Ding L, Guo J (2003) Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics 22

  • Kennett B, Engdahl E (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465

    Google Scholar 

  • Kim KD, Chung TW, Kyung JB (2004) Attenuation of high-frequency P and S waves in the crust of Choongchung provinces, central South Korea. Bull Seismol Soc Am 94(3):1070–1078

    Google Scholar 

  • Kind R, Yuan X, Saul J, Nelson D, Sobolev S, Mechie J, Zhao W, Kosarev G, Ni J, Achauer U, et al. (2002) Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science 298(5596):1219–1221

    Google Scholar 

  • Klemperer SL, Kennedy BM, Sastry SR, Makovsky Y, Harinarayana T, Leech ML (2013) Mantle fluids in the Karakoram fault: helium isotope evidence. Earth Planet Sci Lett 366:59–70

    Google Scholar 

  • Kosuga M (1992) Dependence of coda Q on frequency and lapse time in the western Nagano region, central Japan. J Phys Earth 40(2):421–445

    Google Scholar 

  • Kumar N, Parvez IA, Virk H (2005) Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Phys Earth Planet Inter 151(3-4):243– 258

    Google Scholar 

  • Kumar R, Gupta S, Singh S, Kumar A (2016) The Attenuation of high-frequency seismic waves in the Lower Siang Region of Arunachal Himalaya: Qα, Qβ, QC, Qi, and QS. Bull Seismol Soc Am 106(4):1407

    Google Scholar 

  • Levin V, Roecker S, Graham P, Hosseini A (2008) Seismic anisotropy indicators in Western Tibet: shear wave splitting and receiver function analysis. Tectonophysics 462(1-4):99–108

    Google Scholar 

  • Li C, Van der Hilst RD, Meltzer AS, Engdahl ER (2008) Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet Sci Lett 274(1-2):157–168

    Google Scholar 

  • Liang X, Sandvol E, Chen YJ, Hearn T, Ni J, Klemperer S, Shen Y, Tilmann F (2012) A complex Tibetan upper mantle: a fragmented Indian slab and no south-verging subduction of Eurasian lithosphere. Earth Planet Sci Lett 333:101–111

    Google Scholar 

  • de Lorenzo S, Del Pezzo E, Bianco F (2013) QC, Qβ, Qi and QS attenuation parameters in the Umbria–Marche (Italy) region. Phys Earth Planet Inter 218:19–30

    Google Scholar 

  • Ma’hood M, Hamzehloo H (2009) Estimation of coda wave attenuation in east central Iran. J Seismol 13:125–139

    Google Scholar 

  • Margerin L, Campillo M, Shapiro N, van Tiggelen B (1999) Residence time of diffuse waves in the crust as a physical interpretation of coda Q: application to seismograms recorded in Mexico. Geophys J Int 138(2):343– 352

    Google Scholar 

  • Mukhopadhyay S, Sharma J (2010) Attenuation characteristics of Garwhal–Kumaun Himalayas from analysis of coda of local earthquakes. J Seismol 14(4):693–713

    Google Scholar 

  • Mukhopadhyay S, Tyagi C (2007) Lapse time and frequency-dependent attenuation characteristics of coda waves in the Northwestern Himalayas. J Seismol 11:149–158

    Google Scholar 

  • Mukhopadhyay S, Tyagi C, Rai S (2006) The attenuation mechanism of seismic waves in northwestern Himalayas. Geophys J Int 167:354–360

    Google Scholar 

  • Mukhopadhyay S, Sharma J, Massey R, Kayal J (2008) Lapse-time dependence of coda Q in the source region of the 1999 Chamoli earthquake. Bull Seismol Soc Am 98(4):2080–2086

    Google Scholar 

  • Mukhopadhyay S, Singh B, Mohamed H (2016) Estimation of attenuation characteristics of Aswan reservoir region, Egypt. J Seismol 20(1):79–92

    Google Scholar 

  • Murphy MA, Copeland P (2005) Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogen. Tectonics 24(4)

  • Naghavi M, Rahimi H, Moradi A, Mukhopadhyay S (2017) Spatial variations of seismic attenuation in the North West of Iranian plateau from analysis of coda waves. Tectonophysics 708:70–80

    Google Scholar 

  • Pujades L, Canas J, Egozcue J, Puigvi M, Gallart J, Lana X, Pous J, Casas A (1990) Coda-Q distribution in the Iberian Peninsula. Geophys J Int 100(2):285–301

    Google Scholar 

  • Pulli JJ (1984) Attenuation of coda waves in New England. Bull Seismol Soc Am 74(4):1149–1166

    Google Scholar 

  • Rapine R, Tilmann F, West M, Ni J, Rodgers A (2003) Crustal structure of northern and southern Tibet from surface wave dispersion analysis. J Geophys Res Solid Earth(108)

  • Rautian T, Khalturin V (1978) The use of the coda for determination of the earthquake source spectrum. Bull Seismol Soc Am 68(4):923–948

    Google Scholar 

  • Razi AS, Levin V, Roecker SW, Huang G c D (2014) structure beneath western Tibet using seismic traveltime tomography. Geochem Geophys Geosyst 15:434–452

    Google Scholar 

  • Razi AS, Roecker SW, Levin V (2016) The fate of the Indian lithosphere beneath western Tibet: upper mantle elastic wave speed structure from a joint teleseismic and regional body wave tomographic study. Phys Earth Planet Inter 251:11–23

    Google Scholar 

  • Roecker S, Tucker B, King J, Hatzfeld D (1982) Estimates of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bull Seismol Soc Am 72(1):129–149

    Google Scholar 

  • Sato H (1977) Energy propagation including scattering effects single isotropic scattering approximation. J Phys Earth 25:27–41

    Google Scholar 

  • Sato H (1978) Mean free path of S-waves under the Kanto district of Japan. J Phys Earth 26 (2):185–198

    Google Scholar 

  • Sato H (1988) Is the single scattering model invalid for the coda excitation at long lapse time? Pure Appl Geophys 128(1-2):43–47

    Google Scholar 

  • Sato H, Fehler M (1998). Scattering and attenuation of seismic waves in heterogeneous earth

  • Scherbaum F, Kisslinger C (1985) Coda Q in the Adak seismic zone. Bull Seismol Soc Am 75 (2):615–620

    Google Scholar 

  • Sedaghati F, Pezeshk S (2016) Estimation of the coda-wave attenuation and geometrical spreading in the New Madrid seismic zone. Bull Seismol Soc Am 106(4):1482–1498

    Google Scholar 

  • Shengelia I, Javakhishvili Z, Jorjiashvili N (2011) Coda wave attenuation for three regions of Georgia (Sakartvelo) using local earthquakes. Bull Seismol Soc Am 101(5):2220–2230

    Google Scholar 

  • Singh C, Singh A, Mukhopadhyay S, Shekar M, Chadha R (2011) Lg attenuation characteristics across the Indian Shield. Bull Seismol Soc Am 101(5):2561–2567

    Google Scholar 

  • Singh C, Basha S, Shekar M, Chadha R (2012a) Spatial variation of coda wave attenuation in the Southern Indian Shield and its implications. Geologica Acta 10(3):309–318

  • Singh C, Bharathi VS, Chadha R (2012b) Lapse time and frequency-dependent attenuation characteristics of Kumaun Himalaya. J Asian Earth Sci 54:64–71

  • Singh C, Mondal P, Singh S, Mohanty DD, Jaiswal N, Kumar MR (2015a) Lg attenuation tomographic models of Himalaya and southern Tibet. Tectonophysics 664:176–181

  • Singh C, Singh S, Chakraborty P, Kayal J (2015b) Study of lapse time dependence coda Q in the Andaman Islands using the aftershocks of the 2002 earthquake (Mw 6.5). Natural Hazards 75:779–793

  • Singh C, Biswas R, Srijayanthi G, Kumar MR (2017a) Relative role of intrinsic and scattering attenuation beneath the Andaman Islands, India and tectonic implications. Phys Earth Planet Inter 271:19–28

  • Singh C, Biswas R, Jaiswal N, Ravi Kumar M (2019) Spatial variations of coda wave attenuation in Andaman–Nicobar subduction zone. Geophys J Int 217(3):1515–1523

    Google Scholar 

  • Singh S, Herrmann RB (1983) Regionalization of crustal coda Q in the continental United States. J Geophys Res Solid Earth 88(B1):527–538

    Google Scholar 

  • Singh S, Singh C, Biswas R, Mukhopadhyay S, Sahu H (2016) Attenuation characteristics in eastern Himalaya and southern Tibetan Plateau: an understanding of the physical state of the medium. Phys Earth Planet Inter 257:48–56

    Google Scholar 

  • Singh S, Singh C, Biswas R, Singh A (2017b) Frequency and lapse time dependent seismic attenuation in eastern Himalaya and southern Tibet, vol 85

  • Sun X, Song X, Zheng S, Yang Y, Ritzwoller MH (2010) Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthq Sci 23(5):449–463

    Google Scholar 

  • Tselentis G (1998) Intrinsic and scattering seismic attenuation in W. Greece. Pure Appl Geophys 153(2-4):703– 712

    Google Scholar 

  • Tuvè T, Bianco F, Ibáñez J, Patanè D, Del Pezzo E, Bottari A (2006) Attenuation study in the Straits of Messina area (southern Italy). Tectonophysics 421:173–185

    Google Scholar 

  • Vargas CA, Ugalde A, Pujades LG, Canas JA (2004) Spatial variation of coda wave attenuation in northwestern Colombia. Geophys J Int 158(2):609–624

    Google Scholar 

  • Wang P, Chen X, Shen L, Wu K, Huang M, Xiao Q (2016) Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China). J Volcanol Geotherm Res 320:29–39

    Google Scholar 

  • Wittlinger G, Vergne J, Tapponnier P, Farra V, Poupinet G, Jiang M, Su H, Herquel G, Paul A (2004) Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet. Earth Planet Sci Lett 221(1-4):117– 130

    Google Scholar 

  • Woodgold C (1994) Coda Q in the Charlevoix, Quebec, region: lapse-time dependence and spatial and temporal comparisons. Bull Seismol Soc Am 84(4):1123–1131

    Google Scholar 

  • Xie J, Mitchell B (1990) A back-projection method for imaging large-scale lateral variations of Lg coda Q with application to continental Africa. Geophys J Int 100(2):161– 181

    Google Scholar 

  • Xie J, Wu Z, Liu R, Schaff D, Liu Y, Liang J (2006) Tomographic regionalization of crustal Lg Q in eastern Eurasia. Geophys Res Lett 33(3)

  • Xu Q, Zhao J, Yuan X, Liu H, Pei S (2017) Detailed configuration of the underthrusting Indian lithosphere beneath western Tibet revealed by receiver function images. J Geophys Res Solid Earth 122(10):8257–8269

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci 28(1):211–280

    Google Scholar 

  • Yoshimoto K, Sato H, Ohtake M (1993) Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geophys J Int 114(1):165–174

    Google Scholar 

  • Yun S, Lee WS, Lee K, Noh MH (2007) Spatial distribution of coda Q in South Korea. Bull Seismol Soc Am 97(3):1012–1018

    Google Scholar 

  • Zelt B, Dotzev N, Ellis R, Rogers G (1999) Coda Q in southwestern British Columbia, Canada. Bull Seismol Soc Am 89(4):1083–1093

    Google Scholar 

  • Zhang Z, Wang Y, Houseman GA, Xu T, Wu Z, Yuan X, Chen Y, Tian X, Bai Z, Teng J (2014) The moho beneath western Tibet: Shear zones and eclogitization in the lower crust. Earth Planet Sci Lett 408:370–377

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge IRIS Data Management Center (http://ds.iris.edu/ds/nodes/dmc) for making data available. The Indian contribution to this work was performed under the project SDH, IITKGP funded by the Ministry of Earth Sciences-Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrani Singh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 156 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, R., Singh, C. An investigation of regional variations of coda wave attenuation in western Tibet. J Seismol 24, 1235–1254 (2020). https://doi.org/10.1007/s10950-020-09929-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-020-09929-0

Keywords

Navigation