Skip to main content

Earthquake-induced deformation structures in glacial sediments—evidence on fault reactivation and instability at the Vaalajärvi fault in northern Fennoscandia

Abstract

Late and postglacial reverse faults and seismically-induced landslides are characteristic features of deglaciated terrain in the northern Fennoscandia. The main focus of this study was to investigate the rupturing history of the reverse Vaalajärvi fault complex in Sodankylä, Finland, based on remote sensing, on-site geophysics and sedimentology in excavations trenched across the faulted terrain. In addition to the previously known NNW–SSE-trending Vaalajärvi segment, we discovered six new SW–NE-trending fault segments that probably belong to the same Vaalajärvi ‘postglacial’ fault complex. Our analysis indicate that the Vaalajärvi fault segment was triggered by stress change caused by ruptures on the surrounding SW–NE-trending reverse faults. In total, at least two to three slip events have taken place in different segments of the Vaalajärvi complex since the Early Weichselian with the most recent event(s) being postglacial in timing. By using the scaling laws of fault surface rupture length and offset and under different scenarios of which segments or systems ruptured in a single or separate event, we estimate that the Vaalajärvi complex potentially hosted an earthquake that ranged between Mw ≈ 6.7–7.0. This magnitude is comparable to the landslide-inferred magnitudes in the Vaalajärvi area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Ahjos T, Uski M (1992) Earthquakes in northern Europe in 1375-1989. Tectonophysics 207:1–23

    Article  Google Scholar 

  • Arvidsson R (1996) Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science 274:744–746

    Article  Google Scholar 

  • Green AA, Bergman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE trans. Geosci. Remote Sens 26:65–74

    Article  Google Scholar 

  • Grützner C, Fischer P, Reicherter K (2016) Holocene surface ruptures of the Rurrand fault, Germany—insights from palaeoseismology, remote sensing and shallow geophysics. Geophys J Int 204:1662–1677

    Article  Google Scholar 

  • Hirvas H (1991) Pleistocene stratigraphy of Finnish Lapland. Geological Survey of Finland, Bulletin 354,123 pp

  • Jakobsson M, Björck S, O'Regan M, Flodén T, Greenwood SL, Swärd H (2014) Major earthquake at the Pleistocene-Holocene transition in Lake Vättern, southern Sweden. Geology 42:379–382

    Article  Google Scholar 

  • Kirsch M, Lorenz S, Zimmermann R, Andreani L, Tusa L, Pospiech S, Jackisch R, Unger G, Khodadadzadeh M, Ghamisi P, Middleton M, Ojala A, Mattila J, Nordbäck N, Palmu J-P, Ruskeeniemi T, Sutinen R, Tiljander M, Heikkilä P, Gloaguen R (2019) Hyperspectral outcrop models for palaeoseismic studies. Photogramm Rec 34:385–407

    Article  Google Scholar 

  • Korhonen J (ed) (1989) Maps of northern Fennoscandia, Exposition of Nordkalott maps. Geological Survey of Finland, Guide 24, 28 pp

  • Kübler S, Friedrich AR, Gold RD, Strecker MR (2018) Historical coseismic surface deformation of fuvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany. Int J Earth Sci 107:571–585

    Article  Google Scholar 

  • Kuivamäki A, Vuorela P, Paananen M (1998) Indications of postglacial and recent bedrock movements in Finland and Russian Karelia. Geological Survey of Finland, Nuclear Waste Disposal Research, Report YST-99, 92 pp

  • Kujansuu R (1964) Nuorista siirroksista Lapissa. Summary: recent faults in Lapland. Geologi 16:30–36

  • Kujansuu R (1967) On the deglaciation of western Finnish Lapland. Bulletin de la commission géologique de Finlande 232:1–98

    Google Scholar 

  • Lagerbäck R (1979) Neotectonic structures in northern Sweden. Geol Fören Stockh Förh 100:263–269

    Article  Google Scholar 

  • Lagerbäck R, Sundh M (2008) Early Holocene faulting and paleoseismicity in northern Sweden. In: Geological Survey of Sweden, Research Paper C 836, 80 pp

  • Leonard M (2010) Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bull Seismol Soc Am 100:1971–1988

    Article  Google Scholar 

  • Lin J, Stein RS (2004) Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res 109:B02303. https://doi.org/10.1029/2003JB002607

    Article  Google Scholar 

  • Lindblom E, Lund B, Tryggvason A, Uski M, Bödvarsson R, Juhlin C, Roberts R (2015) Microearthquakes illuminate the deep structure of the endglacial Pärvie fault, northern Sweden. Geophys J Int 201:1704–1716

    Article  Google Scholar 

  • Lund B, Schmidt P, Hieronymus C (2009) Stress evolution and fault stability during the Weichselian glacial cycle. SKBF/KBS technical report 09-15, Swedish nuclear fuel and waste management co, Stockholm, 106 pp

  • Lund B, Roberts R, Smith CA (2017) Review of paleo-, historical and current seismicity in Sweden and surrounding areas with implications for the seismic analysis underlying SKI report 92:3. In: Strål säkerhets myndigheten, Swedish Radiation Safety Authority, 68 pp

  • Lundqvist J, Lagerbäck R (1976) The Pärve fault: a late-glacialfault in the Precambrian of Swedish Lapland. Geol Fören Stockh Förh 98:45–51

    Article  Google Scholar 

  • Mattila J, Ojala AEK, Ruskeeniemi T, Palmu J-P, Aaltonen I, Käpyaho A, Lindberg A, Sutinen R (2019) Evidence of multiple postglacial slip events on the Naamivitikko fault, northern Fennoscandia. Quat Sci Rev 215:242–252

    Article  Google Scholar 

  • Mikko H, Smith C, Lund B, Ask MV, Munier R (2015) LiDARderived inventory of post-glacial fault scarps in Sweden. GFF 137:334–338

  • Moretti M, Alfaro P, Caselles O, Canas JA (1999) Modelling seismites with a digital shaking table. Tectonophysics 304:369–383

    Article  Google Scholar 

  • Moss ES, Ross ZE (2011) Probabilistic fault displacement hazard analysis for reverse faults. Bull Seismol Soc Am 101:1542–1553

    Article  Google Scholar 

  • Nordkalott Project (1986) Geological map, northern Fennoscandia, 1:1 mill. Geological Surveys of Finland, Norway and Sweden

    Google Scholar 

  • Ojala AEK, Mattila J, Ruskeeniemi T, Palmu J-P, Lindberg A, Hänninen P, Sutinen R (2017) Postglacial seismic activity along the Isovaara–Riikonkumpu fault complex. Glob Planet Chang 157:59–72

    Article  Google Scholar 

  • Ojala AEK, Markovaara-Koivisto M, Middleton M, Ruskeeniemi T, Mattila J, Sutinen R (2018a) Dating of seismically-induced paleolandslides in western Finnish Lapland. Earth Surf Proc Land 43:2449–2462

    Article  Google Scholar 

  • Ojala AEK, Mattila J, Virtasalo J, Kuva J, Luoto TP (2018b) Seismic deformation of varved sediments in southern Fennoscandia at 7400 cal BP. Tectonophysics 744:58–71

    Article  Google Scholar 

  • Ojala AEK, Mattila J, Ruskeeniemi T, Markovaara-Koivisto M, Palmu J-P, Nordbäck N, Lindberg A, Aaltonen I, Savunen J, Sutinen R (2019a) Postglacial faults in Finland – a review of PGSdyn–project results. POSIVA, Report:2019, 118 pp–2011

  • Ojala AEK, Mattila J, Ruskeeniemi T, Palmu J-P, Nordbäck N, Kuva J, Sutinen R (2019b) Postglacial reactivation of the Suasselkä PGF complex in SW Finnish Lapland. Int J Earth Sci 108:1049–1065

    Article  Google Scholar 

  • Ojala AEK, Mattila J, Markovaara-Koivisto M, Ruskeeniemi T, Palmu J-P, Sutinen R (2019c) Distribution and morphology of landslides in northern Finland – analysis of postglacial seismic activity. Geomorphology 326:190–201

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82:1018–1040

    Google Scholar 

  • Olesen O (1988) The Stuoragurra fault, evidence of neotectonics in the Precambrian of Finnmark, northern Norway. No Geol Tidsskr 68:107–118

    Google Scholar 

  • Olesen O, Blikra LH, Braathen A, Dehls JF, Olsen L, Rise L, Roberts D, Riis F, Faleide JI, Anda E (2004) Neotectonic deformation in Norway and its implications: a review. Nor J Geol 84:3–34

    Google Scholar 

  • Owen G, Moretti M, Alfaro P (2011) Recognising triggers for soft-sediment deformation: current understanding and future directions. Sed Geol 235:133–140

    Article  Google Scholar 

  • Palmu J-P, Ojala AEK, Ruskeeniemi T, Sutinen R, Mattila J (2015) LiDAR DEM detection and classification of postglacial faults and seismically-induced landforms in Finland: a paleoseismic database. GFF 137:344–352

    Article  Google Scholar 

  • Smith C, Sundh M, Mikko H (2014) Surficial geologic evidence for early Holocene faulting and seismicity. Int J Earth Sci 103:1711–1724

    Article  Google Scholar 

  • Smith CA, Grigull S, Mikko H (2018) Geomorphic evidence of multiple surface ruptures of the Merasjärvi “postglacial fault”, northern Sweden. GFF 140:318–322

    Article  Google Scholar 

  • Steffen R, Steffen H, Wu P, Eaton DW (2014) Stress and fault parameters affecting fault slip magnitude and activation time during a glacial cycle. Tectonics 33:1461–1476

    Article  Google Scholar 

  • Sutinen R (1992) Glacial deposits, their electrical properties and surveying by image interpretation and ground penetrating radar. Bull Geol Survey Finland 359:123 pp

  • Sutinen R, Ojala AEK (2018) Subglacial paleoseismic deformations in central Finnish Lapland. 9th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 25–27 June 2018, Possidi, Greece, abstracts volume

  • Sutinen R, Piekkari M, Liwata P (2007) Time-transgressive evolution of landslides possibly induced by seismotectonic events in Lapland. Applied quaternary research in the central part of glaciated terrain. Geol Survey Finland, Special Paper 46:121–128

    Google Scholar 

  • Sutinen R, Hyvönen E, Middleton M, Ruskeeniemi T (2014a) Airborne LiDAR detection of postglacial faults and Pulju moraine in Palojärvi, Finnish Lapland. Glob Planet Chang 115:24–32

    Article  Google Scholar 

  • Sutinen R, Hyvönen E, Kukkonen I (2014b) LiDAR detection of paleolandslides in the vicinity of the Suasselkä posglacial fault, Finnish Lapland. Int J App Earth Obs Geoinf 27:91–99

    Article  Google Scholar 

  • Toda S, Stein RS, Richards-Dinger K, Bozkurt S (2005) Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J Geophys Res 110:B05S16. https://doi.org/10.1029/2004JB003415

    Article  Google Scholar 

  • Tyrväinen A (1983) pre-quaternary rocks of Sodankylä and Sattanen map-sheet area. Geological map of Finlnad 1: 100 000, explanation to the maps of pre-quaternary rocks, sheets 3713 and 3714, Geol survey Finland, Espoo

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Wu P, Johnston P, Lambeck K (1999) Postglacial rebound and fault instability in Fennoscandia. Geophys J Int 139:657–670

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a part of the cooperation project PGSdyn carried out by Posiva and the Geological Survey of Finland (GTK). We thank Ilkka Aro, Pekka Hänninen, Juha Majaniemi and Laura Tusa for their valuable help during the field surveys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.E.K. Ojala.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ojala, A., Mattila, J., Middleton, M. et al. Earthquake-induced deformation structures in glacial sediments—evidence on fault reactivation and instability at the Vaalajärvi fault in northern Fennoscandia. J Seismol 24, 549–571 (2020). https://doi.org/10.1007/s10950-020-09915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-020-09915-6

Keywords

  • Postglacial fault
  • Paleoseismology
  • Moment magnitude
  • LiDAR
  • Vaalajärvi
  • Finland