Historical faulting as the possible cause of earthquake damages in the ancient Roman port city of Ostia

  • Fabrizio MarraEmail author
  • Giuliano Milana
  • Laura Pecchioli
  • Pamela Roselli
  • Giovanni Cangi
  • Daniela Famiani
  • Alessia Mercuri
  • Giorgia Carlucci
Original Article


This paper presents an original multidisciplinary (geological-structural-geomorphological and seismological) study aimed at investigating the origin of diffused seismic damages affecting several ancient buildings in the Roman port city of Ostia. We also evaluate the possibility to relate these damages to a previously hypothesized ENE-WSW trending fault, bordering the morphological height upon which the Ostia town was founded. Aimed at this scope, we performed seismic noise measures (by using 14 seismic stations) that show no significantly different response and lack of significant ground motion differential amplifications. The coexistence of (i) no local geological heterogeneities and (ii) low amplification of spectral ratios in the recorded seismic signals seems to exclude that the observed seismic damage may be the consequence of significant site effects. When also the large distance from the strongest Apennine’s seismogenic source areas is considered, the possibility that the observed damage may be the consequence of local events should be considered. We discuss the potentiality of the ENE-WSW trending fault as the source of the observed seismic damages, highlighting the supporting evidence as well as the uncertainties of such interpretation.


Geoarchaeology Geomorphology Historical earthquakes Site effects Ostia 



We thank Mariarosaria Barbera, Director of Parco Archeologico di Ostia Antica, Paola Germoni, and Renato Sebastiani for the kind collaboration, and Gerda Henkel for the support, without which the development of this research would have not been possible.


  1. Acocella V, Funiciello R (2006) Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism. Tectonics 25:TC2003. CrossRefGoogle Scholar
  2. Ambrosini S, Castenetto S, Cevolan F, Di Loreto E, Funiciello R, Liperi L, Molin D (1986) Risposta sismica dell'area urbana di Roma in occasione del terremoto del Fucino del 13-1-1915. Mem Soc Geogr Ital 35:445–452.Google Scholar
  3. Amenduni G (1884) Sulle Opere di Bonificazione della Plaga litoranea dell’Agro romano, che comprende le Paludi e Stagni di Ostia; Porto, Maccarese (...). Tipografia Eredi Botta, RomaGoogle Scholar
  4. Bard PY, Bouchon M (1985) The two-dimensional resonance of sediment-filled valleys. Bull Seismol Soc Am 75:519–541Google Scholar
  5. Bellotti P, Calderoni G, Carboni MG, Di Bella L, Tortora P, Veleri P, Zernitskaya V (2007) Late quaternary landscape evolution of the Tiber River delta plain (Central Italy): new evidence from pollen data, biostratigraphy and 14C dating. Z Geomorphol 5:505–534CrossRefGoogle Scholar
  6. Bellotti P, Calderoni G, De Rita F, D’Orefice M, D’Amico C, Esu D, Magri D, Martinez MP, Tortora P, Valeri P (2011) The Tiber River delta plain (central Italy): coastal evolution and implications for the Ancient Ostia roman settlement. The Holocene 21:1105–1116CrossRefGoogle Scholar
  7. Belluomini G, Iuzzolini P, Manfra L, Mortari R, Zalaffi M (1986) Evoluzione recente del delta del Tevere. Geol Romana 25:213–234Google Scholar
  8. Bigi S, Beaubien SE, Ciotoli G, D’Ambrogi C, Doglioni C, Ferrante V, Lombardi S, Milli S, Orlando L, Ruggiero L, Tartarello MC, Sacco P (2014) Mantle-derived CO2 migration along active faults within an extensional basin margin (Fiumicino, Rome, Italy). Tectonophysics 637:137–149CrossRefGoogle Scholar
  9. Bonnefoy-Claudet S, Cotton F, Bard P-Y (2006a) The nature of noise wavefield and its applications for site effects studies. A literature review. Earth Sci Rev 79:205–227CrossRefGoogle Scholar
  10. Bonnefoy-Claudet S, Cornou C, Bard P-Y, Cotton F, Moczo P, Kristek J, Fäh D (2006b) H/V ratio: a tool for site effects evaluation. Results from 1D noise simulations. Geophys J Int 167:827–837CrossRefGoogle Scholar
  11. Boore D (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3–4):635–676CrossRefGoogle Scholar
  12. Boschi E, Ferrari G, Gasperini P, Guidoboni E, Smriglio G, Valensise G (1995) Catalogo dei forti terremoti in Italia dal 461 a.C. al 1980. Istituto Nazionale di Geofisica e Vulcanologia - SGA Storia Geofisica e Ambiente, Bologna, p 973Google Scholar
  13. Bozzano F, Caserta A, Govoni A, Marra F, Martino S (2008) Static and dynamic characterisation of alluvial deposits in the Tiber River valley: new data for assessing potential ground motion in the city of Rome. JGR 113:BO1303. CrossRefGoogle Scholar
  14. Bozzano F, Lenti L, Marra F, Martino S, Paciello A, Scarascia Mugnozza G, Varone C (2016) Outcomes on the seismic response of the geologically complex alluvial valley at the “Europarco Business Park” (Rome – Italy) through instrumental records and numerical modelling. Ital J Eng Geol Environ 1:37–55. Google Scholar
  15. Cangi G (2005) Manuale del Recupero Strutturale e Antisismico. DEI, Tipografia del Genio Civile di Roma, RomaGoogle Scholar
  16. Capelli G, Mazza R, Papiccio C (2007) Intrusione salina nel Delta del Fiume Tevere. Geologia, idrologia e idrogeologia del settore romano della piana costiera. Giornale di Geologia Applicata 5:13–28Google Scholar
  17. Caserta A, Boore DM, Rovelli A, Govoni A, Marra F, Della Monica G, Boschi E (2013) Ground motions recorded in Rome during the April 2009 L’Aquila seismic sequence: site response and comparison with ground motions from a global dataset. BSSA 103(3):1860–1874Google Scholar
  18. Cinti FR, Marra F, Bozzano F, Cara F, Di Giulio G, Boschi E (2008) Tectonostratigraphic investigations within a highly urbanized area: the case of the Grottaperfetta valley in the city of Rome (Italy). Ann Geophys 51(5/6):849–865Google Scholar
  19. Ciotoli G, Etiope G, Marra F, Florindo F, Giraudi C, Ruggiero L (2015) Tiber delta CO2-CH4 degassing: a possible hybrid, tectonically active Ssediment-hosted geothermal system near Rome. J Geophys Res 121.
  20. Cormier VF, Spudich P (1984) Amplification of ground motion and waveform complexity in fault zones: examples from the San Andreas and Calaveras Faults. Geophys J R Astr Soc 79:135–152CrossRefGoogle Scholar
  21. Della Seta M, Del Monte M, Fredi P, Marra F, Pantani G (2002) Caratteri morfostrutturali del settore in riva destra del Fiume Tevere nell’area urbana di Roma. Geol Romana 36:105–122Google Scholar
  22. Di Pasquale S (1987) Statica dei solidi murari – Teoria ed esperienze, Università di Firenze, Dipartimento di Costruzioni, Pubblicazione n.27Google Scholar
  23. Faccenna C, Funiciello R, Bruni A, Mattei A, Sagnotti L (1994) Evolution of a transfer-related basin: the Ardea Basin (Latium, Central Italy). Basin Res 5:12–21Google Scholar
  24. Fäh D, Kind F, Giardini D (2001) A theoretical investigation of average H/V ratios. Geophys J Int 145:535–549CrossRefGoogle Scholar
  25. Frepoli A, Marra F, Maggi C, Marchetti A, Nardi A, Pagliuca NM, Pirro M (2010) Seismicity, seismogenic structures and crustal stress field in the greater area of Rome (Central Italy). J Geophys Res 115. doi:
  26. Galli P, Galderisi A, Peronace E, Giaccio B, Hajdas I, Messina P, Pileggi D, Polpetta F (2019) The awakening of the dormant mount vettore fault (2016 Central Italy Earthquake, 6.6): paleoseismic clues on its millennial silences. Tectonics 38(2):687–705Google Scholar
  27. Giraudi C, Tata C, Paroli L (2009) Late Holocene evolution of Tiber River delta and geoarchaeology of Claudius and Trajan harbor, Rome. Geoarchaeology 24:371–382CrossRefGoogle Scholar
  28. Goiran JP, Salomon F, Mazzini I, Bravard JP, Pleuger E, Vittori C, Boetto G, Christiansen J, Arnaud P, Pellegrino A, Pepe C, Sadori L (2014) Geoarchaeology confirms location of the ancient harbour basin of Ostia (Italy). J Archaeol Sci 41:389–398CrossRefGoogle Scholar
  29. Hailemikael S, Milana G, Cara F, Vassallo M, Pischiutta M, Amoroso S, Bordoni P, Cantore L, Di Giulio G, Di Naccio D, Famiani D, Mercuri A (2017) Subsurface characterization of the Amphiteatrum Flavium area (Rome, Italy) through single-station ambient vibration measurements. Ann Geophys 60(4):S0438. CrossRefGoogle Scholar
  30. Ibs-von Seht M, Wohlenberg J (1999) Microtremors measurements used to map thickness of soft soil sediments. Bull Seismol Soc Am 89:250–259Google Scholar
  31. Kaduri M, Gratier J-P, Renard F, Çakir Z, Lasserre C (2017) The implications of fault zone transformation on aseismic creep: Example of the North Anatolian Fault, Turkey. J Geophys Res Solid Earth 122:4208–4236. CrossRefGoogle Scholar
  32. Luzi L, Puglia R, Russo E, & ORFEUS WG5 (2016) Engineering strong motion database, version 1.0. Istituto Nazionale di Geofisica e Vulcanologia, Observatories & Research Facilities for European Seismology. doi:
  33. Mancini M, Marini M, Moscatelli M, Pagliaroli A, Stigliano F, Di Salvo C et al (2014) A physical stratigraphy model for seismic microzonation of the Central Archaeological Area of Rome (Italy). Bull Earthq Eng 12:1339–1363. Google Scholar
  34. Marcucci S, Milana G, Hailemikael S et al (2019) The deep bedrock in Rome, Italy: a new constraint based on passive seismic data analysis. Pure Appl Geophys.
  35. Marra F (1999) Low-magnitude earthquakes in Rome: structural interpretation and implications for local stress-field. Geophys J Int 138:231–243CrossRefGoogle Scholar
  36. Marra F (2001) Strike-slip faulting and block rotation: a possible triggering mechanism for lava flows in the Alban Hills. J Struct Geol 23(2):129–141Google Scholar
  37. Marra F, Florindo F (2014) The subsurface geology of Rome: sedimentary processes, sea-level changes and astronomical forcing. Earth-Sci Rev 136:1–20Google Scholar
  38. Marra F, Montone P, Pirro M, Boschi E (2004) Evidence of active tectonics on a Roman aqueduct system (II-III century A.D.) near Rome, Italy. J Struct Geol 26:679–690CrossRefGoogle Scholar
  39. Marra F, Florindo F, Boschi E (2008) The history of glacial terminations from the Tiber River (Rome): insights to glacial forcing mechanisms. Paleoceanography 23:PA2205. CrossRefGoogle Scholar
  40. Marra F, Bozzano F, Cinti FR (2013) Chronostratigraphic and lithologic features of the Tiber River sediments (Rome, Italy): implications on the post-glacial sea-level rise and Holocene climate. Glob Planet Chang 107:157–176CrossRefGoogle Scholar
  41. Marra F, Florindo F, Anzidei M, Sepe V (2016) Paleo-surfaces of glacio-eustatically forced aggradational successions in the coastal area of Rome: assessing interplay between tectonics and sea-level during the last ten interglacials. Quat Sci Rev 148:85–100.
  42. Marra F, Florindo F, Petronio C (2017) Quaternary fluvial terraces of the Tiber Valley: geochronologic and geometric constraints on the back-arc magmatism-related uplift in central Italy. J Sci Rep 7:2517. CrossRefGoogle Scholar
  43. Marra F, Motta L, Brock A, Macrì P, Florindo F, Sadori L, Terrenato N (2018) Rome in its setting. Mid-Late Holocene aggradation of the Tiber River alluvial deposits and tectonic origin of the Tiber Island. PlosOne 13(3):e0194838. CrossRefGoogle Scholar
  44. Martino S, Lenti L, Gelis C, Giacomi AC, Santisi D’Avila P, Bonilla F, Bozzano F, Semblat JF (2015) Influence of lateral heterogeneities on strong motion shear strains: simulations in the historical center of Rome (Italy). BSSA 105(5):2604–2624. Google Scholar
  45. Milli S, D’Ambrogi C, Bellotti P, Calderoni G, Carboni MG, Celant A, Di Bella L, Di Rita F, Frezza V, Magri D, Pichezzi RM, Ricci V (2013) The transition from wave-dominated estuary to wave-dominated delta: the Late Quaternary stratigraphic architecture of Tiber River deltaic succession (Italy). Sediment Geol 284–285:159–180CrossRefGoogle Scholar
  46. Molin D, Guidoboni E (1989) Effetto fonti, effetto monumenti a Roma: I terremoti dell’antichità a oggi. In: Guidoboni E (ed) I Terremoti Prima del Mille in Italia e nell’Area Mediterranea, Storia Geofis. Ambiente, Bologna, pp 194–223Google Scholar
  47. Molin D, Ambrosini S, Castenetto S, Di Loreto E, Liperi L, Paciello A (1986) Aspetti della sismicità storica di Roma. Mem Soc Geol Ital 35:439–448Google Scholar
  48. Montone P, Mariucci MT (2016) The new release of the Italian contemporary stress map. Geophys J Int 205:1525–1531CrossRefGoogle Scholar
  49. Northern Petroleum (2002) Relazione geologica, Istanza permesso di ricerca Fiume Tevere. In: Progetto VIDEPI, Ministero dello Sviluppo Economico, DGRME, Società Geologica Italiana and Assomineraria.
  50. Olsen KB, Akinci A, Rovelli A, Marra F, Malagnini L (2005) 3D ground motion estimation in Rome. Italy, BSSA 96(1):133–146. Google Scholar
  51. Panzera F, Lombardo G, Sicali S, D’Amico S (2017a) Surface geology and morphologic effects on seismic site response: the study case of Lampedusa, Italy. Phys Chem Earth 98:62–72. CrossRefGoogle Scholar
  52. Panzera F, Halldorsson B, Vogfjörd K (2017b) Directional effects of tectonic fractures on ground motion site amplification from earthquake and ambient noise data: a case study in South Iceland. Soil Dyn Earthq Eng 97:143–154. CrossRefGoogle Scholar
  53. Papanikolau ID, Roberts GP, Michetti AM (2005) Fault scarps and deformation rates in Lazio–Abruzzo, Central Italy: comparison between geological fault slip-rate and GPS data. Tectonophysics 408:147–176. CrossRefGoogle Scholar
  54. Parolai S, Bormann P, Milkereit C (2002) New relationships between Vs, thickness of sediments and resonance frequency calculated from H/V ratio of seismic noise for the Cologne area. Bull Seismol Soc Am 92:2521–2527CrossRefGoogle Scholar
  55. Pecchioli L, Cangi G, Marra F (2018) Evidence of seismic damages on ancient Roman buildings at Ostia: an arch mechanics approach. J Archaeol Sci Rep 21:117–127. Google Scholar
  56. Pischiutta M, Pastori M, Improta L, Salvini F, Rovelli A (2014) Orthogonal relation between wavefield polarization and fast S wave direction in the Val d’Agri region: an integrating method to investigate rock anisotropy. JGR 119:396–408. Google Scholar
  57. Rovelli A (2001) Edge-diffracted 1-sec surface waves observed in a small-size intramountain basin (Colfiorito, Central Italy). Bull Seismol Soc Am 91(6):1851–1866Google Scholar
  58. Rovelli A, Malagnini L, Caserta A, Marra F (1994) Assessment of potential strong ground motions in the city of Rome. Ann Geofis 37(6):1745–1769Google Scholar
  59. Rovelli A, Malagnini L, Caserta A, Marra F (1995) Using 1-D and 2-D modelling of ground motion for seismic zonation criteria: results for the city of Rome. Ann Geofis 38(5–6):591–605Google Scholar
  60. Rovelli A, Caserta A, Marra F, Ruggiero V (2002) Can seismic waves be trapped inside an inactive fault zone? The case study of Nocera Umbra, central Italy. BSSA 92(6):2217–2232Google Scholar
  61. Rovida A, Locati M, Camassi R, Lolli B, Gasperini P (2016) CPTI15, the 2015 version of the Parametric Catalogue of Italian Earthquakes. Istituto Nazionale di Geofisica e Vulcanologia. doi
  62. Salomon F, Goiran JP, Pleuger E, Mazzini I, Arnoldus-Huyzendveld A, Ghelli A, Boetto G, Germoni P (2014) « Ostie et l’embouchure du Tibre », Chronique des activités archéologiques de l’École française de Rome [En ligne], Italie centrale. URL: DOI:
  63. Salomon F, Goiran JP, Pannuzi S, Djerbi H, Rosa C (2016) Long-term interactions between the Roman City of Ostia and its paleomeander, Tiber Delta, Italy. Geoarchaeology 32(2):215–229. CrossRefGoogle Scholar
  64. Salomon F, Goiran JP, Noirot B, Pleuger E, Bukowiecki E, Mazzini I, Carbonel P, Gadhoum A, Arnaud P, Keay A, Zampini S, Kay S, Raddi M, Ghelli A, Pellegrino A, Morelli C, Germoni P (2018) Geoarchaeology of the Roman port-city of Ostia: Fluvio-coastal mobility,urban development and resilience. Earth Sci Rev 177:265–283. CrossRefGoogle Scholar
  65. SESAME (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. SESAME European Research Project WP12, deliverable D23.12, 2004
  66. Tacchini P (1895) Terremoto di Roma del 1 Novembre 1895. App Boll Soc Sism It 1:203–211Google Scholar
  67. Tovey NK, Paul MA (2002) Modelling self-weight consolidation in Holocene sediments. Bull Eng Geol Environ 61:21–33CrossRefGoogle Scholar
  68. Trasatti E, Marra F, Polcari M, Etiope G, Ciotoli G, Darrah T, Tedesco D, Stramondo S, Florindo F, Ventura G (2018) Coeval uplift and subsidence reveal magma recharging near Rome. Geochem Geophys Geosyst 19.
  69. van Asselen S (2011) The contribution of peat compaction to total basin subsidence: implications for the provision of accommodation space in organic-rich deltas. Basin Res 23:239–255CrossRefGoogle Scholar
  70. van Asselen S, Stouthamer E, van Asch TWJ (2009) Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modeling. Earth Sci Rev 92:35–51CrossRefGoogle Scholar
  71. Vittori C, Mazzini I, Salomon F, Goiran JP, Pannuzi S, Rosa C, Pellegrino A (2014) Palaeoenvironmental evolution of the ancient lagoon of Ostia Antica (Tiber delta, Italy). J Archaeol Sci 54:374–384. CrossRefGoogle Scholar
  72. Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002Google Scholar
  73. Yamanaka H, Takemura M, Ishida H, Niwa M (1994) Characteristics of long-period microtremors and their applicability in exploration of deep sedimentary layers. Bull Seismol Soc Am 84(6):1831–1841Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e VulcanologiaRomeItaly
  2. 2.Department Building Archaeology and Built Heritage ConservationTechnical University of BerlinBerlinGermany
  3. 3.Winckelmann-Institut/Klassische Archäologie, Ostia Forum ProjectHumboldt UniversityBerlinGermany
  4. 4.Research Associated ITABC-CNRRomeItaly

Personalised recommendations