Skip to main content

Advertisement

Log in

Earthquake chemical precursors in groundwater: a review

  • REVIEW ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (•OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Netherlands)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 4

Similar content being viewed by others

References

  • Adekunle IM, Adetunji MT, Gbadebo AM, Banjoko OP (2007) Assessment of groundwater quality in a typical rural settlement in Southwest Nigeria. Int J Environ Res Publ Health 4(4):307–318. https://doi.org/10.3390/ijerph200704040007

    Google Scholar 

  • Allegri L, Bella F, Della M, Ermini A, Improta S, Sgringa V (1983) Radon and tilt anomalies detected before the Irpinia (South Italy) earthquake of November 23, 1980 at great distance from the epicenter. Geophys Res Lett 10:269–272

    Google Scholar 

  • Allis R, Chidsey T, Gwynn W, Morgan C, White S, Adams M, Moore J (2001) Natural CO2 reservoirs on the Colorado Plateau and southern Rocky Mountains: Candidates for CO2 sequestration. In Proceedings of the First National Conference on Carbon Sequestration. US Department of Energy, National Energy Technology Laboratory, Washington, DC, pp 14–17

  • Amoruso A, Crescentini L (2010) Limits on earthquake nucleation and other pre-seismic phenomena from continuous strain in the near field of the 2009 L’Aquila earthquake. Geophys Res Lett 37(10). https://doi.org/10.1029/2010GL043308

  • Andrén M, Stockmann G, Skelton A, Sturkell E, Mörth CM, Guðrúnardóttir HR, Keller NS, Odling N, Dahrén B, Broman C, Balic-Zunic T (2016) Coupling between mineral reactions, chemical changes in groundwater, and earthquakes in Iceland. J Geophys Res : Solid Earth 121(4):2315–2337. https://doi.org/10.1002/2015JB012614

    Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53(1):51–59. https://doi.org/10.1016/S0920-5861(99)00102-9

    Google Scholar 

  • Balk M, Bose M, Ertem G, Rogoff DA, Rothschild LJ, Freund FT (2009) Oxidation of water to hydrogen peroxide at the rock–water interface due to stress-activated electric currents in rocks. Earth Planet Sc Lett 283(1–4):87–92. https://doi.org/10.1016/j.epsl.2009.03.044

    Google Scholar 

  • Barberi F, Carapezza ML (1994) Helium and CO2 soil gas emission from Santorini (Greece). Bull Volcanol 56:335–342

    Google Scholar 

  • Barberio MD, Barbieri M, Billi A, Doglioni C, Petitta M (2017) Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (Central Italy). Sci Rep 7:11735. https://doi.org/10.1038/s41598-017-11990-8

    Google Scholar 

  • Barsukov VL, Varshal GM, Zamokina NS (1985) Recent results of hydrogeochemical studies for earthquake prediction in the USSR. Pure Appl Geophy 122:143–156

    Google Scholar 

  • Bernard P (1992) Plausibility of long distance electrotelluric precursors to earthquakes. J Geophys Res: Solid Earth 97(B12):17531–17546

    Google Scholar 

  • Biagi PF, Castellana L, Minafra A, Maggipinto G, Maggipinto T, Ermini A, Molchanov O, Khatkevich YM, Gordeev EI (2006) Groundwater chemical anomalies connected with the Kamchatka earthquake (M=7.1) on March 1992. Nat Hazards Earth Syst Sci 6:853–859

    Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31(2):97–107. https://doi.org/10.1002/aheh.200300485

    Google Scholar 

  • Bjerg PL, Christensen TH (1992) Spatial and temporal small-scale variation in groundwater quality of a shallow sandy aquifer. J Hydrol 131(1–4):133–149. https://doi.org/10.1016/0022-1694(92)90215-H

    Google Scholar 

  • Balderer W, Leuenberger F. (2007). Observation of fluorescence spectra of groundwater in areas of tectonic activity. Geochemical precursors of earthquakes: Proceedings of the International Brainstorming Session on Geochemical Precursors of Earthquakes 11–13 September 2006, pp. 22–30.

  • Cai Z, Shi H, Zhang W, Luo GEX., Shi X, Yang H, (1984). Some applications of fluid-geochemical methods to earthquake prediction in China. Proceeding of International Syposium on Continental Seismology and Earthquake Prediction, 384–395.

  • Chadha RK, Pandey AP, Kuempel HJ (2003) Search for earthquake precursors in well water levels in a localized seismically active area of reservoir triggered earthquakes in India. Geophys Res Lett 30:642. https://doi.org/10.1029/2002GLO16694

    Google Scholar 

  • Chaudhuri H, Bari W, Iqbal NR, Bhandari K, Ghose D, Sen P, Sinha B (2011) Long range gas-geochemical anomalies of a remote earthquake recorded simultaneously at distant monitoring stations in India. Geochem J 46:137–156

    Google Scholar 

  • Chaudhuri H, Barman C, Iyendar AN, Ghose D, Sen P, Sinha B (2013) Network of seismo-geochemical monitoring observatories for earthquake prediction research in India. Acta Geophysica 61(4):1000–1025

    Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Frondini F, Inguaggiato S, Matteucci F (2011) Geochemical evidence for and characterization of CO2 rich gas sources in the epicentral area of the Abruzzo 2009 earthquakes. Earth Planet Sci Lett 304:389–398

    Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S (2000) Groundwater arsenic contamination in Bangladesh and West Bengal. India Environ Health Perspect 108(5):393–397

    Google Scholar 

  • Cicerone RD, Ebel JE, Britton J (2009) A systematic compilation of earthquake precursors. Tectonophysics 476(3–4):371–396. https://doi.org/10.1016/j.tecto.2009.06.008

    Google Scholar 

  • Claesson L, Skelton A, Graham C, Mörth CM (2007) The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake. Geofluids 7:427–440

    Google Scholar 

  • Dahlgren RP, Johnston MJS, Vanderbilt VC, Nakaba RN (2014) Comparison of the stress-stimulated current of dry and fluid-saturated gabbro samples. Bull Seismol Soc Am 104:2662–2672. https://doi.org/10.1785/0120140144

    Google Scholar 

  • Dey S, Singh RP (2003) Surface latent heat flux as an earthquake precursor. Nat Hazards Earth Syst Sci 3:749–755. https://doi.org/10.5194/nhess-3749-2003

    Google Scholar 

  • Dobrovolsky IP (2001) Comment on “Plausibility of long distance electrotelluric precursors to earthquakes” by P. Bernard. J Geophys Res 106(B10):21,935–921,936

    Google Scholar 

  • Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117(5):1025–1044

    Google Scholar 

  • Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834. https://doi.org/10.1021/es0489238

    Google Scholar 

  • Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204. https://doi.org/10.1016/S0031-9201(01)00292-8

    Google Scholar 

  • Favara R, Grassa F, Inguaggiato S, Valenza M (2001) Hydrogeochemistry and stable isotopes of thermal springs: earthquake-related chemical changes along Belice Fault (Western Sicily). Appl Geochem 16(1):1–17

    Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328(5982):1123–1127. https://doi.org/10.1126/science.1172974

    Google Scholar 

  • Fraser-Smith AC, Bernardi A, McGill PR, Ladd ME, Helliwell RA, Villard OG (1990) Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. Geophys Res Lett 17(9):1465–1468

    Google Scholar 

  • Freund, FT 2002 Charge generation and propagation in igneous rocks. J. Geodynamics, 33(4-5), pp. 543–570

  • Freund FT, Kulahci I, Cyr G, Ling J, Winnick M, Tregloan-Reed J, Freund MM (2009) Air ionization at rock surface and pre-earthquake signals. J Atmos Sol Terr Phys 71:1824–1834

    Google Scholar 

  • Freund FT (2010) Toward a unified solid state theory for pre-earthquake signals. Acta Geophys 58(5):719–766. https://doi.org/10.2478/s11600-009-0066-x

    Google Scholar 

  • Freund FT (2013) Earthquake forewarning—a multidisciplinary challenge from the ground up to space. Acta Geophys 61(4):775–807. https://doi.org/10.2478/s11600-013-0130-4

    Google Scholar 

  • Freund FT, Freund MM (2015) Paradox of peroxy defects and positive holes in rocks part I: effect of temperature. J Asian Earth Sci 2015:373–383. https://doi.org/10.1016/j.jseaes.2015.04.047

    Google Scholar 

  • Fu CC, Yang TF, Walia V, Chen CH (2005) Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochem J 39(5):427–439

    Google Scholar 

  • Gehringer P, Eschweiler H (2001) Advanced oxidation for groundwater remediation and for soil decontamination Rep. International Atomic Energy Agency, Vienna, pp 5–23

    Google Scholar 

  • Geller RJ (1997) Earthquake prediction: a critical review. Geophys J Int 131:425–450. https://doi.org/10.1111/j.1365-246X.1997.tb06588.x

    Google Scholar 

  • Geller RJ, Jackson DD, Kagan YY, Mulargia F (1997) Earthquakes cannot be predicted. Science 275(5306):1616. https://doi.org/10.1126/science.275.5306.1616

    Google Scholar 

  • Gershenzon N, Bambakidis G (2001) Modeling of seismo-electromagnetic phenomena. Russ J Earth Sci 3(4):247–275

    Google Scholar 

  • Gligorovski S, Strekowski R, Barbati S, Vione D (2015) Environmental implications of hydroxyl radicals (•OH). Chem Rev 115(24):13051–13092. https://doi.org/10.1021/cr500310b

    Google Scholar 

  • Glaze WH, Kang JW, Chapin DH (1987) The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng 9(4):335–352

    Google Scholar 

  • Grant RA, Halliday T, Balderer WP, Leuenberger F, Newcomer M, Cyr G, Freund FT (2011) Ground water chemistry changes before major earthquakes and possible effects on animals. Int J Environ Res Public Health 8:1936–1956. https://doi.org/10.3390/ijerph8061936

    Google Scholar 

  • Griscom DL (2011) Trapped-electron centers in pure and doped glassy silica: a review and synthesis. J Non-Cryst Solids 357(8):1945–1962

    Google Scholar 

  • Guiru L, Fongliang J, Jihua W, Peiren Z (1984) Preliminary results of seismogeochemical research in China. Pure Appl Geophys 122(2):218–230

    Google Scholar 

  • Hartmann J, Levy JK (2005) Hydrogeological and gas-geochemical earthquake precursors—a review for application. Nat Hazards 34-3:279–304

    Google Scholar 

  • Hauksson E, Goddard JG (1981) Radon earthquake precursor studies in Iceland. J Geophys Res 86(B8):7037–7054. https://doi.org/10.1029/JB086iB08p07037

    Google Scholar 

  • Hauksson E (1981) Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. J Geophys Res Solid Earth 86:9397–9410

    Google Scholar 

  • Hill T, Neal C (1997) Spatial and temporal variation in pH, alkalinity and conductivity in surface runoff and groundwater for the Upper River Severn catchment. Hydrol Earth Syst Sci 1:697–715. https://doi.org/10.5194/hess-1-697-1997

    Google Scholar 

  • Holland PW, Emerson DE (1990) The global helium-4 content of near-surface atmospheric air. Geochemistry of gaseous elements and compounds. Theophrastus Publications SA, Athens, pp 97–113

  • Hollerman WA, Lau BL, Moore RJ, Malespin CA, Bergeron NP, Freund FT, Wasilewski PJ (2006) Electric currents in granite and gabbro generated by impacts up to 1 km/sec. In AGU Fall Meeting Abstracts

  • Hoven SJV d, Solomonb DK, Molinec GR (2005) Natural spatial and temporal variations in groundwater chemistry in fractured, sedimentary rocks: scale and implications for solute transport. Appl Geochem 20(5):861–873. https://doi.org/10.1016/j.apgeochem.2004.11.013

    Google Scholar 

  • Igarashi G, Saeki S, Takahata N, Sumikawa K, Tasaka S, Sasaki Y, Takahashi M, Sano Y (1995) Ground-water radon anomaly before the Kobe earthquake in Japan. Science 269(5220):60–61. https://doi.org/10.1126/science.269.5220.60

    Google Scholar 

  • Igarashi G, Wakita H (1990) Groundwater radon anomalies associated with earthquakes. Tectonophysics 180(2–4):237–254

    Google Scholar 

  • Inan S, Balderer WP, Leuenberger-West F, Yakan H, Uozvan A, Freund FT (2012) Springwater chemical anomalies prior to the Mw = 7.2 Van earthquake (Turkey). Geochem J 46:e11–e16. https://doi.org/10.1111/j.1365-246X.2011.04941.x

    Google Scholar 

  • Ingebritsen S, Manga M (2014) Earthquakes: hydrogeochemical precursors. Nat Geosci 7:697–698

    Google Scholar 

  • Ingebritsen SE, Sanford WE, Neuzil CE (2006) Groundwater in geologic processes, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Irwin WP, Barnes I (1980) Tectonic relations of carbon dioxide discharges and earthquakes. J Geophys Res Solid Earth 85(B6):3115–3121

    Google Scholar 

  • Italiano F, Martinelli G, Plescia P (2008) CO2 degassing over seismic areas: the role of mechanochemical production at the study case of Central Apennines. Pure Appl Geophys 165:75–94. https://doi.org/10.1007/978-3-7643-8738-9_6

    Google Scholar 

  • Jenkins AC, Cook A (1961) Argon, helium and the rare gases: history, occurrence and properties. Interscience Publishers, London

    Google Scholar 

  • Johnston MJS, Linde AT, Gladwin MT (1990) Near-field high resolution strain measurements prior to the October 18, 1989, Loma Prieta Ms 7.1 earthquake. Geophys Res Lett 17(10):1777–1780. https://doi.org/10.1029/GL017i010p01777

    Google Scholar 

  • Jordan TH, Chen Y-T, Gasparini P, Madariaga R, Main I, Marzocchi W, Papadopoulos G, Sobolev G, Yamaoka K, Zschau J (2011) Operational earthquake forecasting: state of knowledge and guidelines for utilization. Ann Geophys 54(4):316–391. https://doi.org/10.4401/ag-5350

    Google Scholar 

  • Joshua WD, Minkunthan T, Nanthagoban N (2013) Seasonal variation of water table and groundwater quality of the karst aquifer of the Jaffna Peninsula-Sri Lanka. J Natn Sci Found Sri Lanka 41(1):3–12. https://doi.org/10.4038/jnsfsr.v41i1.5326

    Google Scholar 

  • Kawabe I, Maki T, Sugisaki R (1981) Geochemical study on subsurface gases in the fault zones of Shikoku Island, Japan-(I): bubble gas survey around the Median Tectonic Line. Geochem J 15(4):183–191

    Google Scholar 

  • Kawabe I (1984) Anomalous changes of CH4/Ar ratio in subsurface gas bubbles as seismogeochemical precursors at Matsuyama. Japan Pure Appl Geophys 122(2):194–214

    Google Scholar 

  • King CY (1980a) Episodic radon changes in subsurface soil gas along active faults and possible relation to earthquakes. J Geophys Res 85:3065–3078. https://doi.org/10.1029/JB085iB06p03065

    Google Scholar 

  • King CY (1980b) Geochemical measurements pertinent to earthquake prediction. J Geophys Res 85:3051. https://doi.org/10.1029/JB085iB06p03051

    Google Scholar 

  • King C, Koizumi N, Kitagawa Y (1995) Hydrogeochemical anomalies and the 1995 Kobe earthquake. Science 269:38–39

    Google Scholar 

  • King CY (1986) Gas geochemistry applied to earthquake prediction: an overview. J Geophys Res Solid Earth 91(B12):12269–12281

    Google Scholar 

  • King CY, Luo G (1990) Variations of electric resistance and H2 and Rn emissions of concrete blocks under increasing uniaxial compression. Pure Appl Geophys 134:45–56. https://doi.org/10.1007/BF00878079

    Google Scholar 

  • King CY, Evans WC, Presser T, Husk R (1981) Anomalous chemical changes in well water and possible relation to earthquakes. Geophys Ress Lett 8:425–428

    Google Scholar 

  • King CY, Zhang W, Zhang Z (2006) Earthquake-induced groundwater and gas changes. Pure App Geophys 163:633–645. https://doi.org/10.1007/s00024-006-0049-7

    Google Scholar 

  • Kita I, Matsuo S, Wakita H (1982) H2 generation by reaction between H2O and crushed rock: an experimental study on H2 degassing from the active fault zone. J Geophys Res 87:10789–10795

    Google Scholar 

  • Kläning UK, Bielski BHJ, Sehested K (1989) Arsenic(IV). A pulse-radiolysis study. Inorg Chem 28:2717–2724

    Google Scholar 

  • Klaning UK, Larsen E, Sehested K (1994) Oxygen atom exchange in aqueous solution by O- + H2O .fwdarw. OH- + OH and OH + H2O .fwdarw. H2O + OH. A study of hydrogen atom transfer. J Phys Chem 98(36):8946–8951. https://doi.org/10.1021/j100087a022

    Google Scholar 

  • Koizumi N, Kano Y, Kitagawa Y, Sato T, Takahashi M, Nishimura S, Nishida R (1996) Groundwater anomalies associated with the 1995 Hyogo-ken Nanbu earthquake. J Phys Earth 44:373–380

    Google Scholar 

  • Laluraj CM, Gopinath G (2006) Assessment on seasonal variation of groundwater quality of pheratic aquifers—a river basin system. Environ Monit Asses 117:45–57. https://doi.org/10.1007/s10661-006-7675-5

    Google Scholar 

  • Lerner-Lam A (1997) Predictable debate. Seismol Res Lett 68:381–382

    Google Scholar 

  • Li G, Jaing F, Wang J, Zhang P (1985) Preliminary results of seismogeochemical research in China. PAGEOPH 122(218):230

    Google Scholar 

  • Liu PL, Wan DK, Wan TM (1975) Studies of forecasting earthquakes in the light of the abnormal variations of Rn concentrations in groundwater. Acta Geophys Sin 18:279–283

    Google Scholar 

  • Linde AT, Gladwin MT, Johnston MJS (1992) The Loma Prieta earthquake, 1989 and earth strain tidal amplitudes: an unsuccessful search for associated changes. Geophys Res Lett 19(3):317–320. https://doi.org/10.1029/91GL03135

    Google Scholar 

  • Malakootian M, Nouri J (2010) Chemical variations of groundwater affected by the earthquake in bam region. Int J Environ Res 4:443–454

    Google Scholar 

  • Martinelli G, Dadomo A (2017) Factors constraining the geographic distribution of earthquake geochemical and fluid-related precursors. Chem Geol. https://doi.org/10.1016/j.chemgeo.2017.01.006

  • Maurizio P, Campanella L, Millero FJ (1999) Arsenite oxidation by H 2O 2 in aqueous solutions. Geochim Cosmochim Acta 63(18):2727–2735. https://doi.org/10.1016/S0016-7037(99)00212-4

    Google Scholar 

  • Mayer J (1999) Spatial and temporal variation of ground water chemistry in Pettyjohns cave, Northwest Georgia, USA. J Cave Karst Stud 61(3):131–138

    Google Scholar 

  • Mogro-Campero A, Fleischer RL, Likes RS (1980) Changes in subsurface radon concentration associated with earthquakes. J Geophys Res 85:3053–3057. https://doi.org/10.1029/JB085iB06p03053

    Google Scholar 

  • Morawska L, Phillips CR (1993) Dependance of the radon emanation coefficient on radium distribution and internal structure of the material. Geochim Cosmochim Acta 57:1783–1797

    Google Scholar 

  • Munter R (2001) Advanced oxidation processes—current state and prospects. Proc Estonian Acad Sci Chem 20(2):59–80

    Google Scholar 

  • Nagamine K (1994) Origin and coseismic behavior of mineral spring gas at Byakko, Japan, studied by automated gaschromatographic analyses. Chem Geol 114:3–17

    Google Scholar 

  • Naudet V, Revil A, Rizzo E, Bottero J-Y, Bégassat P (2004) Groundwater redox conditions and conductivity in a contaminant plume from geoelectrical investigations. Hydrol Earth Syst Sci 8(1):8–22

    Google Scholar 

  • Nelson D (2002) Natural variations in the composition of groundwater, in groundwater foundation annual meeting, edited, Drinking Water Program. Oregon Department of Human Services, Springfield

    Google Scholar 

  • Nishizawa S, Igarashi G, Sano Y, Shoto E, Tsaka S, Sasaki Y (1998) Radon, Cl and SO4 2– anomalies in hotspring water associated with the 1995 earthquake swarm off the east coast of the Izu Peninsula, Central Japan. Appl Geochem 13:89–94

    Google Scholar 

  • Osborn SG, Vengosh A, Warner NR, Jackson RB (2011) Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc Natl Acad Sci 108(20):8172–8176

    Google Scholar 

  • Otton JK, Schumann RR, Owen DE, Thurman N, Duval JS. (1988). Map showing radon potential of rocks and soils in Fairfax County, Virginia: U.S. Geological Survey Miscellaneous Field Studies Map MF-2047, scale 1:62,500.

  • Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit. Rev Environ Sci Technol 44(23):2577–2641

    Google Scholar 

  • Parkhomenko EI (1971) Electrification phenomena in rocks. Springer US. https://doi.org/10.1007/978-1-4757-5067-6.

  • Pérez NM, Hernández-del-Valle G, Igarashi G, Trujillo I, Nakai S, Sumino H, Wakita H (2008) Searching and detecting earthquake geochemical precursors in CO2-rich groundwaters from Galicia, Spain. Geochem J 42:75–83

    Google Scholar 

  • Plastino W (2006) Monitoring of geochemical and geophysical parameters in the Gran Sasso aquifer. Radioact Environ 8:335–341. https://doi.org/10.1016/S1569-4860(05)08027-7

    Google Scholar 

  • Popit A, Vaupotic J, Dolenec T (2005) Geochemical and geophysical monitoring of thermal waters in Slovenia in relation to seismic activity. Ann Geophys 48(1):73–83

    Google Scholar 

  • Prasath BB, Nandakumar R, Kumar SD, Ananth S, Devi AS, Jayalakshmi T, Raju P, Thiyagarajan M, Santhanam P (2013) Seasonal variations in physico-chemical characteristics of pond and ground water of Tiruchirapalli. India J Environ Biol 34(3):529–537

    Google Scholar 

  • Pulinets S, Ouzounov D (2011) Lithosphere–atmosphere–ionosphere coupling (LAIC) model—a unified concept for earthquake precursors validation. J Asian Earth Sci 41(4):371–382

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708. https://doi.org/10.1180/0026461026650056

    Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124. https://doi.org/10.2138/rmg.2009.70.3

    Google Scholar 

  • Raleigh B, Bennett G, Craig H, Hanks T, Molnar P, Nur A, Savage J, Scholz C, Turner R, Wu F (1977) Prediction of the Haicheng earthquake. Eos Trans AGU 58:236–272

    Google Scholar 

  • Rao NS (2006) Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environ Geol 49:413–429. https://doi.org/10.1007/s00254-005-0089-9

    Google Scholar 

  • Ramirez-Guzman A, Taran YA, Bernard R, Cienfuegos E, Morales P (2005) Variation in the Cl, SO4, δD, and δ18O in water from thermal springs near Acapulco, Guerrero, Mexico, related to seismic activity. Terr Atmos Ocean Sci 16(4):731–743

    Google Scholar 

  • Reddy D, Nagabhushanam P, Sukhija BS (2011) Earthquake (M 5.1) induced hydrogeochemical and δ18O changes: validation of aquifer breaching—mixing model in Koyna, India. Geophys J Int 184:359–370

    Google Scholar 

  • Reddy DV, Nagabhushanam P (2011) Groundwater electrical conductivity and soil radon gas monitoring for earthquake precursory studies in Koyna, India. Appl Geochem 25(5):731–737. https://doi.org/10.1016/j.apgeochem.2011.01.031

    Google Scholar 

  • Reimer GM (1990) Helium increase. Nature 347:342

    Google Scholar 

  • Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5):1114. https://doi.org/10.1029/2001WR000916

    Google Scholar 

  • Roeloffs EA (1988) Hydrologic precursors to earthquakes: a review. Pure Appl Geophys 126(2):177–209. https://doi.org/10.1007/BF00878996

    Google Scholar 

  • Roeloffs EA, Quilty E (1997) Water level and strain changes preceding and following the August 4, 1985 Kettlemean Hills, California, earthquake. Pure Appl Geophys 149:21–60

    Google Scholar 

  • Sano Y, Takahata N, Kagoshima T, Shibata T, Onoue T, Zhao D (2016) Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan. Sci Rep 6:37939. https://doi.org/10.1038/srep37939

    Google Scholar 

  • Sato M, Sutton AJ, McGee KA (1985) Anomalous hydrogen emission from the San-Andreas fault observed at the Cienega Winery, Central California. Pure Appl Geophys 122:376–391

    Google Scholar 

  • Schorlemmer D, Gerstenberger MC, Wiemer S, Jackson DD, Rhoades DA (2007) Earthquake likelihood model testing. Seismol Res Lett 78(1):17–29

    Google Scholar 

  • Sciarra A, Cantucci B, Coltorti M (2017) Learning from soil gas change and isotopic signatures during 2012 Emilia seismic sequence. Sci Rep 7:14187. https://doi.org/10.1038/s41598-017-14500-y

    Google Scholar 

  • Scoville J, Sornette J, Freund FT (2015) Paradox of peroxy defects and positive holes in rocks. Part II: outflow of electric currents from stressed rocks. J Asian Earth Sci 114:338–351. https://doi.org/10.1016/j.jseaes.2015.04.016

    Google Scholar 

  • Shi H, Cai Z (1979) A preliminary study on the causes and anomalous phenomena of subsurface fluids before ttrong shocks. K’o Hsueh T’ung Pao 24:1091–1094

    Google Scholar 

  • ​Shipton ZK, Evans JP, Dockrill B, Heath J, Williams A, Kirchner D, Kolesar PT (2005) Natural leaking CO2-charged systems as analogs for failed geologic storage reservoirs. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations—results from the CO2 capture project 2. Elsevier, Amsterdam, pp 699–712

    Google Scholar 

  • Silver PG, Valette-Silver NJ (1992) Detection of hydrothermal precursors to large Northern California earthquakes. Science 257:1363–1368

    Google Scholar 

  • Shluger AL, Heifets EN, Gale JD, Catlow CRA (1992) Theoretical simulation of localized holes in MgO. J Physics: Condens Matter 4(26):5711

    Google Scholar 

  • Singh M, Kumar M, Jain RK, Chatrath RP (1999) Radon in ground water related to seismic events. Radiat Meas 30(4):465–469

    Google Scholar 

  • Skelton A, Andrén M, Kristmannsdóttir H, Stockmann G, Mörth CM, Sveinbjörnsdóttir Á, Jónsson S, Sturkell E, Guðrúnardóttir HR, Hjartarson H, Siegmund H (2014) Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat Geosci 7:7752–7756. https://doi.org/10.1038/NGEO2250

    Google Scholar 

  • Soares MIM (2000) Biological denitrification of groundwater. Water Air Soil Pollut 123(1):183–193

    Google Scholar 

  • Song SR, Ku WY, Chen YL, Liu CM, Chen HF, Chan PS, Chen YG, Yang TF, Chen CH, Liu TK, Lee M (2006) Hydrogeochemical anomalies in the springs of the Chiayi area in west-central Taiwan as possible precursors to earthquakes. Pure Appl Geophys 163(4):675–691

    Google Scholar 

  • Song SR, Ku WY, Chen YL, Lin YC, Liu CM, Kuo LW, Lo HJ (2003) Groundwater chemical anomaly before and after the Chi-Chi earthquake in Taiwan. Terr Atmos Oceanic Sci 14(3):311–320

    Google Scholar 

  • Sreedevi PD, Ahmed S, Made B, Ledoux E, Gandolfi JM (2006) Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India. Environ Geol 50(1):1–11. https://doi.org/10.1007/s00254-005-0167-z

    Google Scholar 

  • Stavrakas I, Triantis D, Agioutantis Z, Maurigiannakis S, Saltas V, Vallianatos F, Clarke M (2004) Pressure stimulated currents in rocks and their correlation with mechanical properties. Nat Hazards Earth Syst Sci 4:563–567. https://doi.org/10.5194/nhess-4-563-2004

    Google Scholar 

  • Stolper DA, Lawson M, Davis CL, Ferreira AA, Neto ES, Ellis GS, Lewan MD, Martini AM, Tang Y, Schoell M, Sessions AL (2014) Formation temperatures of thermogenic and biogenic methane. Science 344(6191):1500–1503

    Google Scholar 

  • Sugisaki R, Ito T, Nagamine K, Kawabe I (1996) Gas geochemical changes at mineral springs associated with the 1995 southern Hyogo earthquake (M = 7.2), Japan. Earth Planet Sci Lett 139(1–2):239–249

    Google Scholar 

  • Sugisaki R, Ido M, Takeda H, Isobe Y, Hayashi Y, Nakamura N, Satake H, Mizutani Y (1983) Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J Geol 91(3):239–258

    Google Scholar 

  • Sugisaki R, Anno H, Adachi M, Ui H (1980) Geochemical features of gases and rocks along active faults. Geochem J 14(3):101–112

    Google Scholar 

  • Sugisaki R (1981) Deep-seated gas emission induced by the earth tide: a basic observation for geochemical earthquake prediction. Science 212(4500):1264–1266

    Google Scholar 

  • Sugisaki R (1978) Changing He/Ar and N2/Ar ratios of fault air may be earthquake precursors. Nature 275(5677):209–211

    Google Scholar 

  • Sugisaki R (1987) Behavior and origin of helium, neon, argon and nitrogen from active faults. J Geophys Res 92:12523–12530

    Google Scholar 

  • Sugisaki R, Sugiura T (1986) Gas anomalies at three mineral springs and a fumarole before an inland earthquake, Central Japan. J Geophys Res: Solid Earth 91(B12):12296–12304

    Google Scholar 

  • Sun M, Zhang G, Qin Y, Cao M, Liu Y, Li J, Qu J, Liu H (2015) Redox conversion of chromium(VI) and arsenic(III) with the intermediates of chromium(V) and arsenic(IV) via AuPd/CNTs electrocatalysis in acid aqueous solution. Environ Sci Technol 49(15):9289–9297. https://doi.org/10.1021/acs.est.5b01759

    Google Scholar 

  • Suzuki Z (1978) On the Chinese prediction of earthquakes. China Geophys. 1:393–424

    Google Scholar 

  • Teng TL (1980) Some recent studies on groundwater radon content as an earthquake precursor. J Geophys Res 85:3089–3099. https://doi.org/10.1029/JB085iB06p03089

    Google Scholar 

  • Thomas D (1988) Geochemical precursors to seismic activity. Pure Appl Geophys 126:241–265

    Google Scholar 

  • Toutain JP, Baubron JC, Le Bronec J, Allard P, Briole P, Marty B, Miele G, Tedesco D, Luongo G (1992) Continuous monitoring of distal gas emanations at Vulcano, southern Italy. Bull Volcal 54(2):147–155

    Google Scholar 

  • Toutain JP, Munoz M, Poitrasson F, Lienard AC (1997) Springwater chloride ion anomaly prior to a M = 5.2 Pyrenean earthquake. Earth Planet Sci Lett 149:113–119

    Google Scholar 

  • Toutain JP, Baubron JC (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304(1):1–27

    Google Scholar 

  • Tsunogai U, Wakita H (1995) Precursory chemical changes in ground water: Kobe earthquake, Japan. Science 269(5220):60–63. https://doi.org/10.1126/science.269.5220.61

    Google Scholar 

  • Tsivion E, Zilberg S, Gerber RB (2008) Predicted stability of the organo-xenon compound HXeCCH above the cryogenic range. Chem Phys Lett 460(1–3):23–26

    Google Scholar 

  • Vance DB, Jacobs JA (2005) Groundwater and arsenic: chemical behavior and treatment, in Water Encyclopedia, edited, John Wiley & Sons, Inc. https://doi.org/10.1002/047147844X.gw449

  • Virk HS, Singh B (1993) Radon anomalies in soil-gas and groundwater as earthquake precursor phenomena. Tectonophysics 227(1–4):215–224

    Google Scholar 

  • Virk HS, Singh B (1994) Radon recording of Uttarkashi earthquake. Geophys Res Lett 21(8):737–740. https://doi.org/10.1029/94GL00310

    Google Scholar 

  • Wakita H (1978) Earthquake prediction and geochemical studies in China. Chin Geophys 1:443–457

    Google Scholar 

  • Wakita H (1981) Precursory changes in groundwater prior to the 1978 Izu-Oshima-Kinkai earthquake. In: Simpson DW, Richards PG (eds) Earthquake prediction: an international review. Ewing monograph series 4. Am. Geophys. Un., Washington, DC, pp 527–532

  • Wakita H, Fujii N, Matsuo S, Notsu K, Nagao K, Takaoka N (1978) “Helium spots”: caused by a diapiric magma from the upper mantle. Science 200:430–432

    Google Scholar 

  • Wakita H, Igarashi G, Notsu K (1991) An anomalous radon decrease in groundwater prior to an M6.0 earthquake: a possible precursor? Geophys Res Lett 18:689–632. https://doi.org/10.1029/91GL00824

    Google Scholar 

  • Wakita H, Nakamura Y, Sano Y (1988) Short-term and intermediate-term geochemical precursors. Pure Appl Geophys 126(2):267–278

    Google Scholar 

  • Wakita H, Nakamura Y, Notsu K, Noguchi M, Asada T (1980) Radon anomaly: a possible precursor of the 1978 Izu-Oshima-Kinkai earthquake. Science 207(4433):882–883

    Google Scholar 

  • Walia V, Su TC, Fu CC, Yang TF (2005) Spatial variations of radon and helium concentrations in soil-gas across the Shan-Chiao fault, Northern Taiwan. Radiat Meas 40(2):513–516

    Google Scholar 

  • Walia V, Yang TF, Hong WL, Lin SJ, Fu CC, Wen KL, Chen CH (2009) Geochemical variation of soil–gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan. Appl Radiat Isot 67(10):1855–1863

    Google Scholar 

  • Wang CY (1978) Some aspects of the Tangshan (China) earthquake of 1976. China Geophys 1(1):157

    Google Scholar 

  • Wang CY, Manga M (2010) Earthquakes and water. Springer, Berlin

    Google Scholar 

  • Wästeby N, Skelton A, Tollefsen E, Andrén M, Stockmann G, Liljedahl LC, Sturkell E, Mörth M (2014) Hydrochemical monitoring, petrological observation, and geochemical modeling of fault healing after an earthquake. J Geophys Res: Solid Earth 119:5727–5740. https://doi.org/10.1002/2013JB010715

    Google Scholar 

  • Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95(2):684–698

    Google Scholar 

  • Woith H, Wang R, Maiwald U, Pekdeger A, Zschau J (2013) On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake. Chem Geol 339:177–186

    Google Scholar 

  • Woith H (2015) Radon earthquake precursor: a short review. European Phys J Spec Top 224(4):611–627. https://doi.org/10.1140/epjst/e2015-02395-9

    Google Scholar 

  • Wyss M (1997) Second round of evaluations of proposed earthquake precursors. Pure Appl Geophys 149:3–16. https://doi.org/10.1007/BF00945158

    Google Scholar 

  • Yaman M, Sasmaz A, Kaya G, Ince M, Karaaslan NM, Ozcan C, Akkus S (2011) Determination of elements in thermal springs for monitoring pre-earthquake activities by ICP-MS. At Spectrosc 32:182–188

    Google Scholar 

  • Zaviska F, Drogui P, Mercier G, Blais JF (2009) Procédés d’oxydation avancée dans le traitement des eaux et des effluents industriels: Application à la dégradation des polluants réfractaires. Rev Sci Eau 22(4):535–564

    Google Scholar 

  • Zaw M, Emett MT (2002) Arsenic removal from water using advanced oxidation processes. Toxicol Lett 133(1):113–118. https://doi.org/10.1016/S0378-4274(02)00081-4

    Google Scholar 

  • Zhang W (1994) Research on hydrogeochemical precursors of earthquakes. J Earthquake Pred Res 3:170–182

    Google Scholar 

  • Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009) Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia 1(1):1887–1894

    Google Scholar 

  • Zhou X, Liu L, Chen Z, Cui Y, Du J (2017) Gas geochemistry of the hot spring in the Litang fault zone, Southeast Tibetan Plateau. Appl Geochem 79:17–26

    Google Scholar 

  • Zhou X, Wang W, Chen Z, Yi L, Liu L, Xie C, Cui Y, Du J, Cheng J, Yang L (2015) Hot spring gas geochemistry in Western Sichuan Province, China after the Wenchuan Ms 8.0 earthquake. Terr Atmos Oceanic Sci 26(4):361–373

    Google Scholar 

Download references

Acknowledgements

S.R. Paudel likes to thank the Department of Civil Engineering, Pulchowk Campus, Institute of Engineering, Tribhuvan University, Nepal, who creates favorable condition for me working on this manuscript. F. T. Freund acknowledges support over many years from the NASA Earth Surface and Interior (ESI) program and the permission to use facilities at the Engineering Evaluation Laboratory (EEL) at the NASA Ames Research Center, Moffett Field, CA, USA. We would like to thank the anonymous reviewers for their critical comments and helpful suggestions that greatly enhance the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann T. Freund.

Additional information

Highlights

• Complex changes in groundwater chemistry caused by stress-induced electric and electrochemical processes at the rock-to-water interface can reveal new earthquake precursors.

• Groundwater parameters such as total dissolved solids, electrical conductivity, pH, and dissolved gases are unlikely to be useful as pre-seismic indicators if taken separately, but useful if taken in combination with other earthquake precursors.

• Advancement of empirical earthquake prediction requires the identification of non-seismic natural/and artificial contributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paudel, S.R., Banjara, S.P., Wagle, A. et al. Earthquake chemical precursors in groundwater: a review. J Seismol 22, 1293–1314 (2018). https://doi.org/10.1007/s10950-018-9739-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-018-9739-8

Keywords

Profiles

  1. Shukra Raj Paudel