Journal of Seismology

, Volume 22, Issue 4, pp 883–896 | Cite as

Seismotectonics of south-west Dominican Republic using recent data

  • Javier Rodriguez
  • Jens Havskov
  • Mathilde Bøttger SørensenEmail author
  • Luis Fernando Santos


The Dominican Republic has a high level of seismic activity, and a new seismic network has been installed to improve the detection of earthquakes. The network has been operated by Instituto Politécnico Loyola since 2012. It uses six new stations of its own, as well as 17 other stations publically available. In this study, we investigate in particular the south-west of the country where no seismic stations have been operating before. We find an area, SE of the Enriquillo Plantain Garden fault (responsible for the 2010 Haiti M7.0 earthquake), with a high seismic activity (M = 2–4) compared to the surrounding area. This shallow seismicity (except two events around 40 km depth) is not seen in any global catalogs, and it does not seem to be associated with any known faults. However, the region has been under rapid recent uplift since margins between hills and valleys are filled with massive alluvial fans. We made 24 new fault plane solutions using P-polarities and S/P amplitude ratios. The solutions show mainly reverse mechanisms and the P-axis directions are mainly NNE oriented, which is in agreement with a published strain direction from GPS measurements. We conclude that the main cause of the seismicity in our study area is the push of the Beata Ridge against Enriquillo basin and the rest of the Gonave microplate, reflected in the mainly reverse focal mechanisms.


Dominican Republic Seismicity Fault plane solutions Seismic network 



We want to thank Instituto Politécnico Loyola of San Cristobal as well as University of Bergen for helping us build our small seismic network, also to the Incorporated Research Institutions for Seismology (IRIS) for letting us grab the real time seismicity of foreign networks. In particular, it enabled to use stations from the Dominican National Network to whom we are grateful. Also to Dr. Jay Pulliam of Baylor University in USA, for allowing us to access seismic data in our region for particular events. Eddy Perez and Dr. Alexius Santoni in the telecommunication, maintenance, and data processing support, both founders of our Seismic Observatory.

The period 2015–2017 was partially supported with funds from the Ministry of Superior Education, Science and Technology, (MEESCYT) through the National Funds for Science and Technology Research (FONDOCYT).


  1. Benford B, DeMets C, Calais E (2012) GPS estimates of microplate motions, northern Caribbean: evidence for a Hispaniola microplate and implications for earthquake hazard. Geophys J Int 191:481–490CrossRefGoogle Scholar
  2. Calais E, Bethoux N, Mercier de Lepinay B (1992) From transcurrent faulting to frontal subduction: a seismotectonic study of the northern Caribbean plate boundary from Cuba to Puerto Rico. Tectonics 11:114–123CrossRefGoogle Scholar
  3. Calais E, Freed A, Mattioli G, Amelung F, Jónsson S, Jansma P, Hong SH, Dixon T, Prépetit C, Momplaisir R (2010) Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake. Nat Geosci 3:794–799CrossRefGoogle Scholar
  4. Calais E, Symithe S, Mercier de Lepinay B, Prepetit C (2016) Plate boundary segmentation in the northeastern Caribbean from geodetic measurements and Neogene geological observations. Compt Rendus Geosci 348:42–51CrossRefGoogle Scholar
  5. Calmus T (1983) Décrochement senestre sud-haítien: Analises et conséquences paléogéographiques dans la region de Camp Perrin. Extrait Ann. Soc. Géol. Nord. (Lille, France), 309-316Google Scholar
  6. Corbeau J, Rolandone F, Leroy S, Guerrier K, Keir D, Stuart G, Clouard V, Gallacher R, Ulysse S, Boisson D, Bienaimé Momplaisir R, Saint Preux F, Prépetit C, Saurel J-M, Mercier de Lépinay B, Meyer B (2017) Crustal structure of western Hispaniola (Haiti) from a teleseismic receiver function study. Tectonophysics 709:9–19CrossRefGoogle Scholar
  7. Diebold JB, Driscoll NW, EW9501 Team (1999) New insights on the formation of the Caribbean basalt province revealed by multichannel seismic images of volcanic structures in the Venezuelan Basin. In: Hsü K, Sedimentary Basins of the World, 4. Caribbean basins. Mann P (Ed). Elsevier Science, N Y, pp 561–589Google Scholar
  8. Douilly R, Haase JS, Ellsworth WL, Bouin M, Calais E, Symithe SJ, Armbruster JG, Lépinay BM, Deschamps A, Mildor S, Meremonte ME, Hough SE (2013) Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments. Bull Seismol Soc Am 103:2305–2325CrossRefGoogle Scholar
  9. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  10. Edgar T, Ewing J, Hennion J (1971) Seismic refraction and reflection in the Caribbean Sea. Am Assoc Petrol Geol Bull 55:833–870Google Scholar
  11. García-Senz J (2004) Mapa Geológico de la hoja a E. 1:50.000 n° 5871-III (Jimaní) y Memoria correspondiente. Proyecto L-Zona SO de Cartografía Geotemática de la República Dominicana. Programa SYSMIN. Santo Domingo: Dirección General de MineríaGoogle Scholar
  12. Hardebeck J, Shearer P (2002) A new method for determining first-motion focal mechanisms. Bull Seismol Soc Am 92:2264–2276CrossRefGoogle Scholar
  13. Hardebeck J, Shearer P (2003) Using S/P amplitude ratios to constrain the focal mechanisms of small earthquakes. Bull Seismol Soc Am 93:2434–2444CrossRefGoogle Scholar
  14. Havskov J, Ottemöller L (1999) SeisAn earthquake analysis software. Seismol Res Lett 70:532–534CrossRefGoogle Scholar
  15. Hernaiz Huerta PP (2004) Mapa Geológico de la hoja a E.1:50.000 n° 5971-IV (Galván) y Memoria correspondiente. Proyecto L-Zona SO de Cartografía Geotemática de la República Dominicana. Santo Domingo: Programa SYSMIN. Dirección General de MineríaGoogle Scholar
  16. Hernaiz Huerta PP, Díaz de Meira JA, García-Senz J, Deschamps I, Genna A, Nicole N, Pérez-Estaún A (2007) La estructura del suroeste de la República Dominicana: un ejemplo de deformación en régimen transpresivo. Bol Geol Min 118(2):337–358Google Scholar
  17. Hutton LK, Boore D (1987) The ML scale in Southern California. Bull Seismol Soc Am 77:2074–2094Google Scholar
  18. International Seismological Centre (2014) On-line Bulletin., Internatl. Seismol. Cent., Thatcham, United Kingdom
  19. Leroy S, Mauffret A (1996) Intraplate deformation in the Caribbean region. J Geodyn 21(1):113–122CrossRefGoogle Scholar
  20. Llinás R (1971) Geología del área Polo-Duvergé, Cuenca de Enriquillo, República Dominicana. Tesis Doctoral. 83 pp. México city, México: Facultad de ingeniería, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  21. Manaker D, Calais E, Freed A, Alí S, Przybylski P, Mattioli G, de Chabalier J (2008) Interseismic plate coupling and strain partitioning in the northeastern Caribbean. Geophys J Int 174(3):889–903CrossRefGoogle Scholar
  22. Mann P, Taylor FW, Edwards RL, Ku (1995) Actively evolving microplate formation by oblique collision and sideways motion along strike-slip faults: an example from the northeastern Caribbean plate margin. Tectonophysics 246(1–3):1–69CrossRefGoogle Scholar
  23. Mann P, Prentice C, Burr G, Peña L, Taylor F (1998) Tectonic geomorphology and paleoseismology of the Septentrional fault system, Dominican Republic. In: Dolan JF, Mann P (eds) Active strike-slip and collisional tectonics of the northern Caribbean plate boundary zone. Geological Society of America Special Paper 326, BoulderGoogle Scholar
  24. Mauffret A, Leroy S (1999) Neogene intraplate deformation of the Caribbean plate at the Beata Ridge. In: Hsü KJ (series Ed.) Sedimentary basins of the world, 4. Caribbean basins. Mann P (ed) Elsevier science, N Y, pp 627–669Google Scholar
  25. Maurrase F, Husler J, Georges G, Schmitt R, Damond P (1979) Upraised Caribbean sea floor below acoustic reflector b” at the southern peninsula of Haiti. Geol Mijnb 8:71–83Google Scholar
  26. McNamara DMM, Maharrey JZ, Mildore S-L, Anglade JRAD, Hough SE, Given D, Benz H, Gee L, Frankel A (2012) Frequency-dependent seismic attenuation within the Hispaniola. Island region of the Caribbean Sea. Bull Seismol Soc Am 102:773–782CrossRefGoogle Scholar
  27. Mercier de Lépinay B, Deschamps A, Klingelhoefer F, Mazabraud Y, Delouis B, Clouard V, Hello Y, Crozon J, Marcaillou B, Graindorge D, Vallée M, Perrot J, Bouin M-P, Saurel J-M, Charvis P, St-Louis M (2011) The 2010 Haiti earthquake: a complex fault pattern constrained by seismologic and tectonic observations. Geophys Res Lett 38:L22305CrossRefGoogle Scholar
  28. Núñez D, Córdoba D, Cotilla M, Pazos A (2016) Modeling the crust and upper mantle in northern Beata Ridge (CARIBE NORTE Project). Pure Appl Geophys 173(5):1639–1661CrossRefGoogle Scholar
  29. Pubellier M, Vila JM, Boisson D (1991) North Caribbean neotectonic events: the TransHaitian fault system. Tertiary record of an oblique transcurrent shear zone uplifted in Hispaniola. Tectonophysics 194:217–236CrossRefGoogle Scholar
  30. Pubellier M, Mauffret A, Leroy S, Vila JM, Amilcar H (2000) Plate boundary readjustment in oblique convergence: example of the Neogene of Hispaniola, Greater Antilles. Tectonics 19:630–648CrossRefGoogle Scholar
  31. Pulliam J (2013-2016) Greater Antilles seismic program. International Federation of Digital Seismograph Networks. Baylor University, United StatesGoogle Scholar
  32. Reasenberg P, Oppenheimer D (1985) FPFIT, FPPLOT, and FPPAGE: FORTRAN computer programs for calculating and displaying earthquake fault-plane solutions. U. S Geol. Surv. Open-file rept. 85–739, 109ppGoogle Scholar
  33. Saint Fleur N, Feuillet N, Grandin R (2015) Seismotectonics of southern Haiti: a new faulting model for the 12 January 2010 M7 earthquake. Geophys Res Lett 42:10773–10281CrossRefGoogle Scholar
  34. Sen G, Hickey-Vargas G, Waggoner, Maurrasse F (1988) Geochemistry of basalts from Dumisseau formation, southern Haiti; Implications for the origin of the Caribbean crust. Earth Planet Sci Lett 87:423–437CrossRefGoogle Scholar
  35. Silva R, Havskov J, Bean C, Wallenstein N (2012) Seismic swarms, fault plane solutions, and stress tensors for São Miguel Island central region (Azores). J Seismol 16:389–407CrossRefGoogle Scholar
  36. Snoke JA, Munsay JW, Teague AG, Bollinger GA (1984) A program for focal mechanism determination by combined use of polarity and SV-P amplitude ratio data. Earth. Notes 55:15Google Scholar
  37. Symithe S, Calais E (2016) Present-day shortening in Southern Haiti from GPS measurements and implications for seismic hazard. Tectonophysics 679:117–124CrossRefGoogle Scholar
  38. Taylor FW, Mann P, Valastro Jr S, Burke K (1985) Stratigraphy and radiocarbon chronology of a subaerially exposed Holocene coral reef, Dominican Republic. J Geol 93:311–332CrossRefGoogle Scholar
  39. Utheim T, Havskov J, Ozyazicioglu M, Rodriguez J, Talavera E (2014) RTQUAKE, a real time earthquake detection system integrated with SEISAN. Seismol Res Lett 85:735–742CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Observatorio Sismológico Politécnico LoyolaSan CristobalDominican Republic
  2. 2.Department of Earth ScienceUniversity of BergenBergenNorway

Personalised recommendations