Journal of Seismology

, Volume 22, Issue 3, pp 625–667 | Cite as

GeoInt: the first macroseismic intensity database for the Republic of Georgia

  • O. Varazanashvili
  • N. Tsereteli
  • F. L. BonaliEmail author
  • V. Arabidze
  • E. Russo
  • F. Pasquaré Mariotto
  • Z. Gogoladze
  • A. Tibaldi
  • N. Kvavadze
  • P. Oppizzi


Our work is intended to present the new macroseismic intensity database for the Republic of Georgia—hereby named GeoInt—which includes earthquakes from the historical (from 1250 B.C. onwards) to the instrumental era. Such database is composed of 111 selected earthquakes and related 3944 intensity data points (IDPs) for 1509 different localities, reported in the Medvedev-Sponheuer-Karnik scale (MSK). Regarding the earthquakes, the MS is in the 3.3–7 range and the depth is in the 2–36 km range. The entire set of IDPs is characterized by intensities ranging from 2–3 to 9–10 and covers an area spanning from 39.508° N to 45.043° N in a N-S direction and from 37.324° E to 48.500° E in an E-W direction, with some of the IDPs located outside the Georgian border, in the (i) Republic of Armenia, (ii) Russian Federation, (iii) Republic of Turkey, and (iv) Republic of Azerbaijan. We have revised each single IDP and have reevaluated and homogenized intensity values to the MSK scale. In particular, regarding the whole set of 3944 IDPs, 348 belong to the Historical era (pre-1900) and 3596 belong to the instrumental era (post-1900). With particular regard to the 3596 IDPs, 105 are brand new (3%), whereas the intensity values for 804 IDPs have been reevaluated (22%); for 2687 IDPs (75%), intensities have been confirmed from previous interpretations. We introduce this database as a key input for further improvements in seismic hazard modeling and seismic risk calculation for this region, based on macroseismic intensity; we report all the 111 earthquakes with available macroseismic information. The GeoInt database is also accessible online at and will be kept updated in the future.


Seismic hazard Macroseismic intensity Database Historical earthquake Instrumental earthquake 



This work was supported by Shota Rustaveli National Science Foundation (SRNF) (Project 216758), NATO project EAP SFPP 984934, NATO project SfP G4934 “Georgia Hydropower Security,” and European Space Agency project 32309 “Active tectonics and seismic hazard of southwest Caucasus by remotely-sensed and seismological data.” Two anonymous reviewers are fully acknowledged for their useful comments. We also wish to acknowledge Andrea Rovida for useful suggestions on a preliminary version of the online database.

Supplementary material

10950_2017_9726_MOESM1_ESM.rar (1.1 mb)
ESM 1 (RAR 1167 kb)


  1. Adamia S., V. Alania, N. Tsereteli, O. Varazanashvili, N. Sadradze, N. Lursmanashvili, and A. Gventsadze. 2017. Postcollisional tectonics and seismicity of Georgia. GSA Special Papers Online First.
  2. Agalarova, E.B., Gasanov, A.G., Gotsadze, O.D., 1985. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1982 godu. Izd. Nauka, Moskva, pp. 12-29Google Scholar
  3. Agalarova, E.B., Gasanov, A.G., Geodakyan, E.G., Gotsadze, O.D., 1987. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1984 godu. Izd. Nauka, Moskva, pp. 19-35Google Scholar
  4. Agalarova, E.B., Gasanov, A.G., Geodakyan, E.G., Gotsadze, O.D., 1988. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1985 godu. Izd. Nauka, Moskva, pp. 60-75Google Scholar
  5. Akhalbedashvili, A. M. 1970. Khashmskoe zemletryasenie v iyune 1967 goda. Zemletryaseniya v SSSR, v 1967 godu. Izd. Nauka, MoskvaGoogle Scholar
  6. Akhalbedashvili A, Papalashvili V, Tchitchinadze V (2006) Q. Tbilisis seismurobis shesakheb. Tbilisi, p 47 (in Georgian)Google Scholar
  7. Albarello D, D’Amico V (2004) Attenuation relationship of macroseismic intensity in Italy for probabilistic seismic hazard assessment. Boll Geofis Teor Appl 45(4):271–284Google Scholar
  8. Albini P, Rovida A (2016) From written records to seismic parameters: the case of the 6 April 1667 Dalmatia earthquake. Geoscience Lett 3(1):30. CrossRefGoogle Scholar
  9. Albini, P., Musson, R. M. W., Gomez Capera, A. A., Locati, M., Rovida, A., Stucchi, M., & Viganò, D., 2013. Global historical earthquake archive and catalogue (1000-1903). Pavia, ItalyGoogle Scholar
  10. Albini P, Musson RM, Rovida A, Locati M, Gomez Capera AA, Viganò D (2014) The global earthquake history. Earthquake Spectra 30(2):607–624. CrossRefGoogle Scholar
  11. Ambraseys NN, Adams RD (1989) Long-term seismicity of North Armenia. Eos, Trans Am Geophys Union 70(10):145–154. CrossRefGoogle Scholar
  12. Ameri G, Bindi D, Pacor F, Galadini F (2011) The 2009 April 6, Mw 6.3, L’Aquila (central Italy) earthquake: finite-fault effects on intensity data. Geophys J Int 186(2):837–851. CrossRefGoogle Scholar
  13. Asadi Z, Zare M (2014) Estimating magnitudes of prehistoric earthquakes and seismic capability of fault from landslide data in Noor valley (central Alborz, Iran). Nat Hazards 74(2):445–461. CrossRefGoogle Scholar
  14. Askew BL, Algermissen ST (1985a) Catalog of earthquakes for South America: hypocenter and intensity data, vol 5. CERESIS, LimaGoogle Scholar
  15. Askew BL, Algermissen ST (1985b) Catalog of earthquakes for South America: hypocenter and intensity data, vol 7a. CERESIS, LimaGoogle Scholar
  16. Ayvazishvili IV, Lebedeva TM, Makhatadze LN, Papalashvili VG, Pletnev KG, Siboshvili TI, Rustanovich DN, Shebalin NV, Fabritsius ZE (1973) Zemletryasenie 3 yanvarya 1970 goda v Borjomskom payone. Izd. Metsniereba, Tbilisi, p 55 (in Russian)Google Scholar
  17. Babayev, G (2006). Seismic hazard assessment for the Baku City and Absheron Peninsula, Azerbaijan. In AIP Conference Proceedings, 825, 1, 113–119Google Scholar
  18. Babayev G, Telesca L (2014) Strong motion scenario of 25th November 2000 earthquake for Absheron peninsula (Azerbaijan). Nat Hazards 73(3):1647–1661. CrossRefGoogle Scholar
  19. Babayev G, Tibaldi A, Bonali FL, Kadirov F (2014) Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan. Nat Hazards 72(2):789–808. CrossRefGoogle Scholar
  20. Bakun, W. H. (2005). Magnitude and location of historical earthquakes in Japan and implications for the 1855 Ansei Edo earthquake. J Geophys Res: Solid Earth, 110(B2), DOI:
  21. Bakun WH (2006a) Estimating locations and magnitudes of earthquakes in southern California from modified Mercalli intensities. Bull Seismol Soc Am 96(4A):1278–1295. CrossRefGoogle Scholar
  22. Bakun WH (2006b) MMI attenuation and historical earthquakes in the basin and range province of western North America. Bull Seismol Soc Am 96(6):2206–2220. CrossRefGoogle Scholar
  23. Bakun WH, Hopper MG (2004a) Magnitudes and locations of the 1811–1812 New Madrid, Missouri, and the 1886 Charleston, South Carolina, earthquakes. Bull Seismol Soc Am 94(1):64–75. CrossRefGoogle Scholar
  24. Bakun WH, Hopper MG (2004b) Historical seismic activity in the central United States. Seismol Res Lett 75(5):564–574. CrossRefGoogle Scholar
  25. Bakun WH, Scotti O (2006) Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophys J Int 164(3):596–610. CrossRefGoogle Scholar
  26. Bakun WH, Wentworth CM (1997) Estimating earthquake location and magnitude from seismic intensity data. Bull Seismol Soc Am 87:1502–1521Google Scholar
  27. Bakun WH, Haugerud RA, Hopper MG, Ludwin RS (2002) The December 1872 Washington State Earthquake. Bull Seismol Soc Am 92(8):3239–3258. CrossRefGoogle Scholar
  28. Bakun WH, Johnston AC, Hopper MG (2003) Estimating locations and magnitudes of earthquakes in eastern North America from modified Mercalli intensities. Bull Seismol Soc Am 93(1):190–202. CrossRefGoogle Scholar
  29. Balassanian S, Nazaretian S, Avanessian A, Arakelian A, Igumnov V, Badalian M, Tovmassian A (1997) The new seismic zonation map for the territory of Armenia. Nat Hazards 15(2–3):231–249. CrossRefGoogle Scholar
  30. Balavadze, B.K., Chichinadze, V.K., 1991. Paravanskoe zemletryasenie 13 maya 1986 goda. Otv. red.: Izd. Nauka, Moskva, p. 128 (in Russia)Google Scholar
  31. Bindi D, Parolai S, Oth A, Abdrakhmatov K, Muraliev A, Zschau J (2011) Intensity prediction equations for Central Asia. Geophys J Int 187(1):327–337. CrossRefGoogle Scholar
  32. Bindi D, Parolai S, Gómez-Capera A, Locati M, Kalmetyeva Z, Mikhailova N (2014) Locations and magnitudes of earthquakes in Central Asia from seismic intensity data. J Seismol 18(1):1–21. CrossRefGoogle Scholar
  33. Blake A (1941) On the estimation of focal depth from macroseismic data. Bull Seismol Soc Am 31:225–231Google Scholar
  34. Brink, U.S., Bakun, W.H., Flores, C.H., 2011. Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region. J Geophys Res: Solid Earth, 116(B12), DOI:
  35. Byus, Ye. I.1948. Seysmicheskye usloviya Zakavkaz'ya, chasts I. Izd. AN GSSR, Tbilisi, p. 304Google Scholar
  36. Byus YI (1952) Seysmicheskye usloviya Zakavkaz'ya, chasts II. Izd. AN GSSR, Tbilisi, 175 pGoogle Scholar
  37. Capera AAG, D’Amico V, Meletti C, Rovida A, Albarello D (2010) Seismic hazard assessment in terms of macroseismic intensity in Italy: a critical analysis from the comparison of different computational procedures. Bull Seismol Soc Am 100(4):1614–1631. CrossRefGoogle Scholar
  38. Cornell, SE, & Ismailzade, F (2005). The Baku-Tbilisi-Ceyhan pipeline: implications for Azerbaijan. The Baku-Tbilisi-Ceyhan Pipeline: Oil Window to the West, 61–84Google Scholar
  39. Cua, G, Wald, DJ, Allen, TI, Garcia, D, Worden, CB, Gerstenberger, M, Lin, K, Marano, K, (2010). Best practices for using macroseismic intensity and ground motion intensity conversion equations for hazard and loss models in GEM1 (p. 4). GEM Technical Report 2010-4, GEM Foundation, Pavia, Italy. www. globalquakemodel. orgGoogle Scholar
  40. Dolce M, Kappos A, Masi A, Penelis G, Vona M (2006) Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies. Eng Struct 28(3):357–371. CrossRefGoogle Scholar
  41. Doser DI (2009) Estimating magnitude and location of Alaskan earthquakes using intensity data. Bull Seismol Soc Am 99(6):3430–3453. CrossRefGoogle Scholar
  42. Farahani JV, Zare M, Cichowicz A (2014) Microseismicity of the Tehran region based on the data recorded in a local monitoring network: 2004-2010. Episodes 37(3):206–217Google Scholar
  43. Garcia-Mayordomo J, Faccioli E, Paolucci R (2004) Comparative study of the seismic hazard assessments in European national seismic codes. Bull Earthq Eng 2(1):51–73. CrossRefGoogle Scholar
  44. Gotsadze, OD, Tutberidze, NP (1986). Coordinaty ochagov glavnogo i posleduyshchikh zemletryaseniy. In: Balavadze, B., Chichinadze, V. (Eds.), Paravani earthquake on May 13, 1986., Nauka Publ. House, Moscow, p. 36Google Scholar
  45. Gregersen S, Wiejacz P, Dębski W, Domanski B, Assinovskaya B, Guterch B, Mantyniemi P, Nikulin VG, Pacesa A, Puura V, Aronov AG, Aronova TI, Grunthal G, Husebye ES, Sliaupa S (2007) The exceptional earthquakes in Kaliningrad district, Russia on September 21, 2004. Phys Earth Planet Inter 164(1):63–74. CrossRefGoogle Scholar
  46. Grünthal, G (Editor), (1998). European macroseismic scale 1998, Cahiers du Centre Européen de Géodynamique et de Séismologie, Luxembourg, 15, 1–99Google Scholar
  47. Grünthal G, Thieken AH, Schwarz J, Radtke KS, Smolka A, Merz B (2006) Comparative risk assessments for the city of Cologne, Germany-storms, floods, earthquakes. Nat Hazards 38(1–2):21–44. CrossRefGoogle Scholar
  48. Gülen, L, Team, W (2010). Earthquake Model of the Middle East (EMME) project: active fault database for the Middle East region. In AGU Fall Meeting AbstractsGoogle Scholar
  49. Gülen, L, Şeşetyan, K, Adamia, S, Sadradze, N, Gvencadze, A, & Karakhanyan, A (2014). Earthquake model of the Middle East (EMME) project: active faults and seismic sources second European conference on earthquake engineering and seismology, 2ECEES, 24–29 August 2014, Istanbul, TurkeyGoogle Scholar
  50. Hinzen K-G, Oemisch M (2001) Location and magnitude from seismic intensity data of recent and historic earthquakes in the northern Rhine area, Central Europe. Bull Seismol Soc Am 91(1):40–56. CrossRefGoogle Scholar
  51. Hough SE (2013) Missing great earthquakes. J Geophys Res: Solid Earth 118(3):1098–1108CrossRefGoogle Scholar
  52. Jackson, J. A., Ambraseys, N. N., Giardini, D., & Balassanian, S. (1997). Convergence between Eurasia and Arabia in eastern Turkey and the Caucasus. In: Historical and prehistorical earthquakes in the Caucasus, Kluwer, 28, 79–90Google Scholar
  53. Kalafat D, Kekovali K, Günes Y, Yilmazer M, Kara M, Deniz P, Berberoğlu M (2009) A catalogue of source parameters of moderate and strong earthquakes for Turkey and its surrounding area (1938–2008). Boğaziçç Üniversitesi Report, Istanbul, TurkeyGoogle Scholar
  54. Kalinin, NI, Kuzin, NP, Leonov, NP (1982). Makroseysmicheskoe obsledovanie zemletryaseniya v rayone Inguri GES 27 dekabrya. Zemletryaseniya v SSSR, v 1979 godu. Izd. Nauka, Moskva, pp. 27-31Google Scholar
  55. Khromovskikh VS, Nikonov AA (1984) Following strong earthquakes. Nauka Publ, House, Moscow, p 145 (in Russian)Google Scholar
  56. Khromovskikh VS, Solonenko VP, Semenov RM, Zhilkin VN (1979) Paleoseismology of the Great Caucasus. Nauka Publ, House, Moscow, p 18 (in Russian)Google Scholar
  57. Kondorskaya and Shebalin (Chief Eds) (1982), New catalogue of strong earthquakes in the USSR from ancient times through 1977. 1982. NOAA, USA, pp. 608Google Scholar
  58. Lebedeva TM, Makhatadze LN, Papalashvili VG (1970) Paravanskoe zemletryasenie 29 iyunya 1967 goda. Zemletryaseniya v SSSR, v 1967 godu. Izd. Nauka, Moskva, pp. 34-35Google Scholar
  59. Levret A, Backe JC, Cushing M (1994) Atlas of macroseismic maps for French earthquakes with their principal characteristics. Nat Hazards 10(1-2):19–46. CrossRefGoogle Scholar
  60. Locati M, Rovida A, Albini P, Stucchi M (2014) The AHEAD portal: a gateway to European historical earthquake data. Seismol Res Lett 85(3):727–734. CrossRefGoogle Scholar
  61. Macroseismic data Unpublished. Archives of the TSU M. Nodia Institute of GeophysicsGoogle Scholar
  62. Maggio, G. (2017). Trans Adriatic pipeline: a gas pipeline at the centre of a social struggle and a movement in conflict to stop it H-ermes. J Commun, 2017(9), 91–104Google Scholar
  63. Makhatadze, L. N., Mukhadze, T. I., Papalashvili, V. G., Tutberidze, N. P., Shengelya, I. S. 1996. Zemletryasenie 16 dekabrya 1990 goda na Djhavakhetskom nagorye v rayone oz. Sagamo. Zemletryaseniya v Severnoy Evrasii, v 1990 g., Izd. OIFZ RAN, Moskva, pp. 28-32Google Scholar
  64. Makhatadze, L. N., Mukhadze, T. I., Papalashvili, V. G. 1997. Zemletryasenie 23 oktyabrya 1992 goda v Gudamakarskom ushchelie. Zemletryaseniya v Severnoy Evrasii, v 1992 g. Izd. OIFZ RAN, Moskva, pp. 29-36. (in Russia)Google Scholar
  65. Makrushina NG, Shebalin NV (1982) Estimation of the quality of strong shaking sites in seismic zoning maps in the USSR. Probl Eng Seismol 23:97–113 (in Russian)Google Scholar
  66. Malinovskiy, N.V., 1935. Catalog of earthquakes in the AzSSR. Proceeding, Az section, branch of the Acad. Scf. USSR, 10 (in Russian)Google Scholar
  67. Medvedev, SV, Sponheuer, W, & Karnik, V. (1965). Seismic intensity scale version MSK 1964. United nation educational, scientific and cultural organization, Paris, 7Google Scholar
  68. Mukhadze, TI, Papalashvili, VG 2003. Khashminskoe-IV zemletryasenie 27 noyabrya 1997 goda c Mw=5.3, Io=7 (Gruziya). Zemletryaseniya v Severnoy Evrasii, v 1997 g., Izd. OIFZ RAN, Moskva, pp. 244-250Google Scholar
  69. Mushketov IV, Orlov AP (1893) The catalog of earthquakes in the Russian empire. Russ. Geogr. Soc, St. Petersburg (in Russian)Google Scholar
  70. Musson RM, Grünthal G, Stucchi M (2010) The comparison of macroseismic intensity scales. J Seismol 14(2):413–428. CrossRefGoogle Scholar
  71. Nadirov R, Rzayev O (2017) The Metsamor nuclear power plant in the active tectonic zone of Armenia is a potential Caucasian Fukushima. J Geosci Environ Protect 5(04):46–55. CrossRefGoogle Scholar
  72. Napetvaridze SG (1984) Gavazskoe zemletryasenie 23 fevralya 1981 goda. Izd. Metsniereba, Tbilisi, p 54Google Scholar
  73. New catalogue of strong earthquakes in the USSR (1977) Nauka Publ. House, Moscow, p 535 (in Russian)Google Scholar
  74. Noji EK, Kelen GD, Armenian HK, Oganessian A, Jones NP, Sivertson KT (1990) The 1988 earthquake in Soviet Armenia: a case study. Ann Emerg Med 19(8):891–897. CrossRefGoogle Scholar
  75. Norouzi, N, Mojarab, M, Asadi, Z, Zare, M, 2015. A case study of seismic hazard analysis at Al-Tajiat and Al-Zawraa stadiums in Baghdad/Iraq region. Arab J Sci Eng (Springer Science & Business Media BV), 40(7)Google Scholar
  76. ONEMI, 2010. Informe de sismo sensible, Gobierno de Chile, Miniserio del Interior (ONEMI), 12/04/2010 + Informe de sismo, Sistema Sismológico Nacional de la Universidad de Chile, 27 de febrero de 2010Google Scholar
  77. Papaioannou CA, Papazachos BC (2000) Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull Seismol Soc Am 90(1):22–33. CrossRefGoogle Scholar
  78. Papalashvili VG (1997) Seysmicheskye usloviya Kavkaza. Izd. Metsniereba, Tbilisi, p 223Google Scholar
  79. Papalashvili, VG, Agalarova, EB, 1993. Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1989 godu. Izd. Nauka, Moskva, pp. 24-31Google Scholar
  80. Papalashvili, VG, Butikashvili, NA (1996). Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1990 godu. Izd. OIFZ RAN, Moskva, pp. 24-26Google Scholar
  81. Papalashvili, VG, Butikashvili, NA (2003). Paravanskoe-II zemletryasenie 9 fevralya 1997 goda c MLH=4.5, Io=5-6 (Gruziya). Zemletryaseniya v Severnoy Evrasii, v 1997 g., Izd. OIFZ RAN, Moskva, pp. 219-221Google Scholar
  82. Papalashvili, VG, Makhatadze, LN, (1984). Makroseysmicheskie dannye s parametrami ochaga i izoseysty silnykh zemletryasenii na territorii Gruzinskoy SSR. Otv red. Sh. G. Napetvaridze. Izd. AN GSSR, Tbilisi, 27–28 (in Russian)Google Scholar
  83. Papalashvili VG, Bagramyn AK, Gotsadze OD (1982) Zemletryaseniya v SSSR, v 1978 godu. Izd. Nauka, Moskva, pp 11–19 (in Russian)Google Scholar
  84. Papalashvili, VG, Mukhadze, TI, Gogmachadze SA (1991). Zemletryasenie 6 sentyabrya v Kobuletskom rayone Adzharskoy ASSR. Zemletryaseniya v SSSR, v 1988 godu. Izd. Nauka, Moskva. pp. 53–59Google Scholar
  85. Papalashvili, VG, Varazanashvili, OSh, Gogmachadze, SA, (1997). Racha-Javskoe zemletryasenie 29 aprelya 1991 goda. Zemletryaseniya v SSSR, v 1991Google Scholar
  86. Papalashvili, VG, Akhalbedashvili, AM, Kakhiani, LA, (2000). Gruziya. Zemletryaseniya v Severnoy Evrasii, v 1994 g., Izd. OIFZ RAN, Moskva, pp. 18-20Google Scholar
  87. Papalashvili, VG, Makhatadze, LN, Gogmachadze, SA, Labadze, LB Askanskoe (2002). Zemletryasenie 28 maya 1996 goda c Kp=11.7, Io=6-7. Zemletryaseniya v Severnoy Evrasii, v 1996 g. Izd. OIFZ RAN, Moskva, 176-180Google Scholar
  88. Pasquarè FA, Tormey D, Vezzoli L, Okrostsvaridze A, Tutberidze B (2011) Mitigating the consequences of extreme events on strategic facilities: evaluation of volcanic and seismic risk affecting the Caspian oil and gas pipelines in the Republic of Georgia. J Environ Manag 92(7):1774–1782. CrossRefGoogle Scholar
  89. Pataraya, EI (1957). Gomaretskoe zemletryasenie 11 yunya 1954 goda. Trud. IG AN Gruzinskoy SSR, t. 16, pp. 129-133Google Scholar
  90. Polese M, Di Ludovico M, Prota A, Manfredi G (2013) Damage-dependent vulnerability curves for existing buildings. Earthquake Eng Struct Dynam 42(6):853–870. CrossRefGoogle Scholar
  91. Rautian, TG (1964). Ob opredelenii energii zemletryaseniy na rasstoyaniyakh do 3000 km. Akademiya Nauk SSSR, Trudy Instituta Fiziki Zemli, no 32, p. 88–93. (in Russian)Google Scholar
  92. Rautian T, Khalturin VI (1978) The use of coda for determination of the earthquake source spectrum. Bull Seism Soc Am 68:904–922Google Scholar
  93. Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S, Cakmak R, Ozener H, Kadirov F, Guliev I, Stepanyan R, Nadariya M, Hahubia G, Mahmoud S, Sakr K, ArRajehi A, Paradissis D, Al-Aydrus A, Prilepin M, Guseva T, Evren E, Dmitrotsa A, Filikov SV, Gomez F, Al-Ghazzi R, Karam G (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J Geophys Res 111(B5):B05411. CrossRefGoogle Scholar
  94. Shebalin, NV (1968) Methods of application of seismic engineering data for regional seismity. Regional seismity in the USSR, Nauka Publ. House, Moscow, pp. 95-111 (in Russian)Google Scholar
  95. Shebalin NV (1975) On the estimation of seismic intensity. In: Seismic scale and methods for measuring seismic intensity. Nauka Publ. House, Moscow, pp 87–109 (in Russian)Google Scholar
  96. Shebalin, NV, Tatevosian, RE, (1997). Catalogue of large historical earthquakes of the Caucasus, in: Historical and prehistorical earthquakes in the Caucasus. Edited by D. Giardini and S. Balassanian, NATO ASI Series, 2, 201–232, DOI:
  97. Shebalin, NV, Aivazishvili, IV, Varazanashvili O, Papalashvili, VG. (1976). Equations of the macroseismic field for the Greater Caucasus and the Transcaucasus. Seismic Bulletin of the Caucasus for 1974. Metnsniereba Publ. House, Moscow, 95–111 (in Russian)Google Scholar
  98. Shoushtari AV, Adnan AB, Zare M (2016) On the selection of ground–motion attenuation relations for seismic hazard assessment of the Peninsular Malaysia region due to distant Sumatran subduction intraslab earthquakes. Soil Dyn Earthq Eng 82:123–137. CrossRefGoogle Scholar
  99. Soligo, R., & Jaffe, A. M. (2002). The economics of pipeline routes: the conundrum of oil exports from the Caspian basin. In: Energy in the Caspian Region, , Palgrave Macmillan UK109–132Google Scholar
  100. Sørensen MB, Stromeyer D, Grünthal G (2010) A macroseismic intensity prediction equation for intermediate depth earthquakes in the Vrancea region, Romania. Soil Dyn Earthq Eng 30(11):1268–1278. CrossRefGoogle Scholar
  101. Stepanyan VA (1942) Short chronology of the most important earthquakes in Armenia and neighboring regions. Armenian Acad. Scf, USSR, Yerevan (in Armenian)Google Scholar
  102. Stromeyer D, Grünthal G (2009) Attenuation relationship of macroseismic intensities in Central Europe. Bull Seismol Soc Am 99(2A):554–565. CrossRefGoogle Scholar
  103. Szeliga W, Hough S, Martin S, Bilham R (2010) Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull Seismol Soc Am 100(2):570–584. CrossRefGoogle Scholar
  104. Tan O, Taymaz T (2006) Active tectonics of the Caucasus: earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms. Spec Pap Geol Soc Am 409:531–578Google Scholar
  105. Tatashidze Z, Tsereteli E, Kutsnashvili O (2000). Principal hazard factor and mechanisms causing landslides (Georgian as an example). In: Proceedings of the international symposium on landslides, Cardiff, Wales, 25–30 June 2000, Thomas Talford, London, 3, 1449–1452Google Scholar
  106. Tavera H, Buforn E, Bernal I, Antayhua Y, Vilacapoma L (2002) The Arequipa (Peru) earthquake of June 23, 2001. J Seismol 6(2):279–283. CrossRefGoogle Scholar
  107. Tavera, H, Bernal, I, Salas, H (2007). El Sismo de Pisco del 15 de Agosto, 2007 (7.9 Mw) Departamento de Ica – Perú, Instituto Geofisico del Peru, Dirección de Sismología – CNDG, Lima-PerúGoogle Scholar
  108. Telesca L, Matcharasvili T, Chelidze T, Zhukova N (2012) Relationship between seismicity and water level in the Enguri high dam area (Georgia) using the singular spectrum analysis. Nat Hazards Earth Syst Sci 12(8):2479–2485. CrossRefGoogle Scholar
  109. Telesca, L, Kadirov, F, Yetirmishli, G, Safarov, R, Babayev, G, & Ismaylova, S (2017). Statistical analysis of the 2003–2016 seismicity of Azerbaijan and surrounding areas. J Seismol, 1–19Google Scholar
  110. Tibaldi, A, & Tsereteli, N (2017). International effort tackles landslide hazards to keep the peace. EOS, TRANSACTIONS, 98, doi:
  111. Tibaldi A, Alania V, Bonali FL, Enukidze O, Tsereteli N, Kvavadze N, Varazanashvili O (2017a) Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia. J Struct Geol 96:35–53. CrossRefGoogle Scholar
  112. Tibaldi A, Russo E, Bonali FL, Alania V, Chabukiani A, Enukidze O, Tsereteli N (2017b) 3-D anatomy of an active fault-propagation fold: a multidisciplinary case study from Tsaishi, western Caucasus (Georgia). Tectonophysics 77:253–269CrossRefGoogle Scholar
  113. Tibaldi A, FL Bonali, E Russo, F Pasquarè Mariotto, (2017c). Structural development and stress evolution of an arcuate fold-and-thrust system, southwestern Greater Caucasus, Republic of Georgia. J Asian Earth Sci, submittedGoogle Scholar
  114. Tsakaya AD, Makhatadze LN, Tabidze DD (1967) Chkhaltinskoe zemletryasenie. Izd. Metsniereba, Tbilisi, p 54Google Scholar
  115. Tsereteli N, G Tanircan, E Safak, O Varazanashvili, T Chelidze, A Gvencadze, N Goguadze (2012). Seismic hazard assessment for Southern Caucasus–Eastern Turkey energy corridors: the example of Georgia. Correlation between human factors and the prevention of disasters. Edited by David L. Barry, Wilhelm G. Coldewey, Dieter W.G. Reimer, Dmytro V. Rudakov. IOS Press 94, 96–111Google Scholar
  116. Tsereteli N, Tibaldi A, Alania V, Gventsadse A, Enukidze O, Varazanashvili O, Muller BIR (2016a) Active tectonics of central-western Caucasus, Georgia. Tectonophysics 691:328–344. CrossRefGoogle Scholar
  117. Tsereteli A, Askan A, Hamzehloo H (2016b) Hybrid-empirical ground motion estimations for Georgia. Acta Geophysica 64(5):1225–1256. CrossRefGoogle Scholar
  118. Tskhakaia, AD (1949). Gudamakarskoe zemletryasenie 15 avgusta 1947 g. Kvart. Seysm. Byull., 14, N1-4, TbilisiGoogle Scholar
  119. Tskhakaya, AD (1973). Gegechkorskoe zemletryasenie v yanvare 1957 g. Izv. AN SSSR. Izd. AN SSSR, N8, pp. 990–999Google Scholar
  120. Tskhakaya, AD, Dzhibladze, EA (1972). Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1968 godu. Izd. Nauka, Moskva, pp.17-31Google Scholar
  121. Tskhakaya, AD, Dzhibladze, EA (1973) Zemletryaseniya Kavkaza. Zemletryaseniya v SSSR, v 1969 godu. Izd. Nauka, Moskva, pp. 19-28Google Scholar
  122. Tskhakaya AD, Papalashvili VG (1973) Seysmicheskye usloviya Kavkaza. Izd. Metsniereba, Tbilisi, p 115Google Scholar
  123. Tyagunov S, Grünthal G, Wahlström R, Stempniewski L, Zschau J (2006) Seismic risk mapping for Germany. Nat Hazards Earth Syst Sci 6(4):573–586. CrossRefGoogle Scholar
  124. Unpublished instrumental data Archives of the TSU M. Nodia Institute of GeophysicsGoogle Scholar
  125. Varazanashvili, O (2017). Unpublished macroseismic data. Archives of the TSU M. Nodia Institute of GeophysicsGoogle Scholar
  126. Varazanashvili O, Papalashvili V (1998) Reconstruction of strong earthquake parameters by historical dara of XI-XIV cc. in Georgia. J Georgian Geophys Soc 3(A):77–84Google Scholar
  127. Varazanashvili, OSh, Gotsadze, OD et al. (1989). Paravanskoe (Abul-Samsarskoe) zemletryasenie 13 maya. Zemletryaseniya v SSSR, v 1986 godu. Izd. Nauka, Moskva, pp. 78-86Google Scholar
  128. Varazanashvili, O., Tsereteli, N., Tsereteli, E. (2011) Historical earthquakes in Georgia (up to 1900): source analysis and catalogue compilation. Monograph, Pub. Hause MVP, Tbilisi, 39–40Google Scholar
  129. Varazanashvili O, Tsereteli N, Amiranashvili A, Tsereteli E, Elizbarashvili E, Dolidze J, Qaldani L, Saluqvadze M, Adamia S, Arevadze N, Gvencadze A (2012) Vulnerability, hazards and multiple risk assessment for Georgia. Nat Hazards 64(3):2021–2056. CrossRefGoogle Scholar
  130. Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified Mercalli intensity in California. Earthquake Spectra 15(3):557–564. CrossRefGoogle Scholar
  131. Wu YM, Teng TL, Shin TC, Hsiao NC (2003) Relationship between peak ground acceleration, peak ground velocity, and intensity in Taiwan. Bull Seismol Soc Am 93(1):386–396. CrossRefGoogle Scholar
  132. Zare M (2017) Recent development of the earthquake strong motion-intensity catalog and intensity prediction equations for Iran. J Seismol 21(4):591–613. CrossRefGoogle Scholar
  133. Zare, M., Amini, H., Yazdi, P., 2014a. Seismicity of the Middle East: a revision on the seismicity parameters NCEE 2014 - 10th U.S. National Conference on Earthquake Engineering: Frontiers of Earthquake EngineeringGoogle Scholar
  134. Zare M, Amini H, Yazdi P, Sesetyan K, Betul Demircioglu M, Kalafat D, Erdik M, Giardini D, Asif Khan M, Tsereteli N (2014b) Recent developments of the Middle East catalog. J Seismol 18(N4):749–772. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • O. Varazanashvili
    • 1
  • N. Tsereteli
    • 1
  • F. L. Bonali
    • 2
    Email author
  • V. Arabidze
    • 1
  • E. Russo
    • 2
  • F. Pasquaré Mariotto
    • 3
  • Z. Gogoladze
    • 1
  • A. Tibaldi
    • 2
  • N. Kvavadze
    • 1
  • P. Oppizzi
    • 4
  1. 1.Nodia Institute of GeophysicsIv. Javakhishvili Tbilisi State UniversityTbilisiGeorgia
  2. 2.Department of Earth and Environmental ScienceUniversity of Milan BicoccaMilanItaly
  3. 3.Department of Theoretical and Applied SciencesInsubria UniversityVareseItaly
  4. Ltd.BellinzonaSwitzerland

Personalised recommendations