Neo-deterministic seismic hazard scenarios for India—a preventive tool for disaster mitigation

Abstract

Current computational resources and physical knowledge of the seismic wave generation and propagation processes allow for reliable numerical and analytical models of waveform generation and propagation. From the simulation of ground motion, it is easy to extract the desired earthquake hazard parameters. Accordingly, a scenario-based approach to seismic hazard assessment has been developed, namely the neo-deterministic seismic hazard assessment (NDSHA), which allows for a wide range of possible seismic sources to be used in the definition of reliable scenarios by means of realistic waveforms modelling. Such reliable and comprehensive characterization of expected earthquake ground motion is essential to improve building codes, particularly for the protection of critical infrastructures and for land use planning. Parvez et al. (Geophys J Int 155:489–508, 2003) published the first ever neo-deterministic seismic hazard map of India by computing synthetic seismograms with input data set consisting of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. As described in Panza et al. (Adv Geophys 53:93–165, 2012), the NDSHA methodology evolved with respect to the original formulation used by Parvez et al. (Geophys J Int 155:489–508, 2003): the computer codes were improved to better fit the need of producing realistic ground shaking maps and ground shaking scenarios, at different scale levels, exploiting the most significant pertinent progresses in data acquisition and modelling. Accordingly, the present study supplies a revised NDSHA map for India. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax) and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Acton CE, Mitra S, Priestley K, Gaur VK (2010) Crustal structure of the Darjeeling, Sikkim Himalaya and southern Tibet. Geophys J Int 184:829–852. doi:10.1111/j.1365-246X.2010.04868.x

    Article  Google Scholar 

  2. Aki K (1987) Strong motion seismology, in strong ground motion seismology, NATO ASI Series C, Mathematical and Physical Science, 204:3–39, eds Erdik, M. & Toksoz, M., Reidel, Dordrecht

  3. Alvarez L, Vaccari F, Panza GF (1999) Deterministic seismic zoning of eastern Cuba. Pure Appl Geophys 156:469–486 ISSN: 0033-4553

    Article  Google Scholar 

  4. Aoudia A, Vaccari F, Suhadolc P, Meghraoui M (2000) Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria. J Seismol 4:79–88

    Article  Google Scholar 

  5. Bhatia SC, Chetty TRK, Filimonov MB, Gorshkov AI, Rantsman EY, Rao MN (1992) Identification of potential areas for the occurrence of strong earthquakes in Himalayan arc region. Proc Indian Acad Sci Earth Planet Sci 101:369–385

    Google Scholar 

  6. Bhattarai M, Adhikari LB, Gautam UP, Laurendeau A, Labonne C, Hoste-Colomer R, Sèbe O, Hernandez B (2015) Overview of the large 25 April 2015 Gorkha, Nepal, earthquake from accelerometric perspectives. Seismol Res Lett 86:1540–1548

    Article  Google Scholar 

  7. Bus Z, Szeidovitz G, Vaccari F (2000) Synthetic seismograms based deterministic seismic zoning for the Hungarian part of the Pannonian Basin. Pure Appl Geophys 157:205–220

    Article  Google Scholar 

  8. Cancani A (1904) Sur l’emploi d’une double echelle seismique des intesites, empirique et absolue. G Beitr 2:281–283

    Google Scholar 

  9. Castaños H, Lomnitz C (2002) PSHA: is it science? Eng Geol 66:315–317

    Article  Google Scholar 

  10. Chandra U (1977) Earthquakes of Peninsular India—a seismotectonic study. Bull Seismol Soc Am 67:1387–1413

    Google Scholar 

  11. Chandra U (1978) Seismicity, earthquake mechanics and tectonics along the Himalayan mountain range and vicinity. Phys Earth Planet Inter 16:109–131

    Article  Google Scholar 

  12. D’Amico V, Albarello D, Mantovani E (1999) A distribution-free analysis of magnitude-intensity relationships: an application to the Mediterranean region. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24 (6):517–521

  13. Dixit AM, Ringler AT, Sumy DF, Cochran ES, Hough SE, Martin SS, Gibbons S, Luetgert JH, Galetzk J, Shrestha SN, Rajaure S, McNamara DE (2015) Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-SHAKE strong-motion network. Seismol Res Lett 86:1533–1539

    Article  Google Scholar 

  14. Doglioni C, Carminati E, Petricca P, Riguzzi F (2015) Normal fault earthquakes or graviquakes. Sci Rep 5. doi:10.1038/srep12110

  15. EC8 (1993) Structures in seismic regions—design—part 1. General and building, Doc C250/SC8/ N57A

  16. El-Sayed A, Vaccari F, Panza GF (2001) Deterministic seismic hazard in Egypt. Geophys J Int 144:555–567 ISSN: 0956-540X

    Article  Google Scholar 

  17. Fasan M, Magrin A, Amadio C, Romanelli F, Vaccari F, Panza GF (2016) A seismological and engineering perspective on the 2016 Central Italy earthquakes. International Journal of Earthquake and Impact Engineering 1(4):395–420

  18. Fitch TJ (1970) Earthquake mechanism in the Himalayan, Burmese and Andaman regions and the continental tectonics in Central Asia. J Geophys Res 75:2699–2709

    Article  Google Scholar 

  19. Galetzka J, Melgar D, Genrich JF, Geng J, Owen S, Lindsey EO, Xu X, Bock Y, Avouac J-P, Adhikari LB, Upreti BN, Pratt-Sitaula B, Bhattarai TN, Sitaula BP, Moore A, Hudnut KW, Szeliga W, Normandeau J, Fend M, Flouzat M, Bollinger L, Shrestha P, Koirala B, Gautam U, Bhatterai M, Gupta R, Kandel T, Timsina C, Sapkota SN, Rajaure S, Maharjan N (2015) Slip pulse and resonance of the Kathmandu basin during the 2015 Gorkha earthquake, Nepal. Science 349:1091–1095

    Article  Google Scholar 

  20. Gelfand IM, Guberman SI, Izvekova ML, Keilis-Borok VI, Ranzman EJA (1972) Criteria of high seismicity, determined by pattern recognition. Tectonophysics 13:415–422

    Article  Google Scholar 

  21. Gelfand IM, Guberman SI, Keilis-Borok VI, Knopoff L, Press F, Ranzman EYA, Rotwain IM, Sadovsky AM (1976) Pattern recognition applied to earthquake epicenters in California. Phys Earth Planet Inter 11:227–283

    Article  Google Scholar 

  22. Gorshkov A, Kossobokov V, Soloviev A (2003) Recognition of earthquake-prone areas. In: Keilis-Borok V, Soloviev A (eds) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer, Heidelberg, pp 239–310

    Google Scholar 

  23. Gorshkov A, Parvez IA, Novikova O (2012) Recognition of earthquake-prone areas in the Himalaya: validity of the results. Int J Geophys. doi:10.1155/2012/419143

  24. Gung Y, Romanowicz B (2004) Q tomography of the upper mantle using three component long period waveforms. Geophys J Int 157:813–830

    Article  Google Scholar 

  25. Gusev AA (1983) Descriptive statistical model of earthquake source radiation and its application to an estimation of short-period strong motion. Geophys J R Astron Soc 74:787–808

    Google Scholar 

  26. Hough SE (2015) Introduction to the focus section on the 2015 Gorkha, Nepal, earthquake. Seismol Res Lett 86:1502–1505

    Article  Google Scholar 

  27. Julià J, Jagadeesh S, Rai SS, Owens TJ (2009) Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: implications for Precambrian crustal evolution. J Geophys Res. doi:10.1029/2008JB006261

  28. Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987

    Article  Google Scholar 

  29. Keilis-Borok VI, Soloviev A (2003) Nonlinear dynamics of the lithosphere and earthquake prediction. Springer-Verlag, Berlin-Heidelberg

    Google Scholar 

  30. Klügel JU (2007) Error inflation in probabilistic seismic hazard analysis. Eng Geol 90:186–192

    Article  Google Scholar 

  31. Lliboutry L (2000) Quantitative geophysics and geology. Springer, Berlin

    Google Scholar 

  32. Magrin A, Parvez IA, Vaccari F, Peresan A, Rastogi BK, Cozzini S, Bisignano D, Romanelli F, Ashish, Choundry P, Roy KS, Mir RR, Panza GF (2016) Neo-deterministic definition of seismic and tsunami hazard scenarios for the Territory of Gujarat (India). In: Earthquakes and their impact on society, pp 193-212. Springer International Publishing

  33. Mandal P (2006) Sedimentary and crustal structure beneath Kachchh and Saurashtra regions, Gujarat, India. Phys Earth Planet Inter 115:286–299

    Article  Google Scholar 

  34. Markušić S, Suhadolc P, Herak M, Vaccari F (2000) A contribution to seismic hazard in Croatia from deterministic modelling. Pure Appl Geophys 157:185–204

    Article  Google Scholar 

  35. Martin SS, Szeliga W (2010) A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bull Seismol Soc Am 100:62–569

    Google Scholar 

  36. Martin SS, Hough SE, Hung C (2015) Ground motions from the 2015 Mw 7.8 Gorkha, Nepal, earthquake constrained by a detailed assessment of macroseismic data. Seismol Res Lett 86:1524–1532

    Article  Google Scholar 

  37. Medvedev SV (1977) Seismic intensity scale MSK-76. Publ Inst Geophys Pol Acad Sc 117:95–102

    Google Scholar 

  38. Mitchell BJ, Cong L, Ekstrom G (2008) A continent-wide map of 1-Hz Lg coda Q variation across Eurasia and its relation to lithospheric evolution. J Geophys Res. doi:10.1029/2007JB005065

  39. Mitra S, Priestley K, Bhattacharya AK, Gaur VK (2005) Crustal structure and earthquake focal depths beneath northeastern India and southern Tibet. Geophys J Int 160:227–248. doi:10.1111/j.1365- 246X.2004.02470.x

    Article  Google Scholar 

  40. Mitra S, Kainkaryam SM, Padhi A, Rai SS, Bhattacharya SN (2011) The Himalayan foreland basin crust and upper mantle. Phys Earth Planet Inter 184:34–40

    Article  Google Scholar 

  41. Molnar P, Fitch TJ, Wu-Francis T (1973) Fault plane solutions of shallow earthquakes and contemporary tectonics in Asia. Earth Planet Sci Lett 19:101–112

    Article  Google Scholar 

  42. Murty ASN, Sain K, Rajendra Prasad B (2008) Velocity structure of the West-Bengal Sedimentary Basin, India along the Palashi-Kandi profile using a travel-time inversion of wide-angle seismic data and gravity modeling—an update. Pure Appl Geophys 165:1733–1750. doi:10.1007/s00024-008-0398-5

    Article  Google Scholar 

  43. Panza GF, Vaccari F, Costa G, Suhadolc P, Fäh D (1996) Seismic input modelling for zoning and microzoning. Earthquake Spectra 12:529–566

    Article  Google Scholar 

  44. Panza GF, Vaccari F, Romanelli F (1999) Deterministic seismic hazard assessment. In: Wenzel F et al (eds) Vrancea earthquakes. Tectonic and risk mitigation. Kluwer, Dordrecht, pp 269–286

    Google Scholar 

  45. Panza GF, Romanelli F, Vaccari F (2001) Seismic wave propagation in laterally heterogeneous anelastic media: theory and application to seismic zonation. Advances in Geophysics 43:1–95, eds Dmowska, R. & Saltzman, B., Academic, San Diego

  46. Panza GF, Alvarez L, Aoudia A, Ayadi A, Benhallou H, Benouar D, Yun-Tai C, Cioflan C, Zhifeng D, El-Sayed A, Garcia J, Garofalo B, Gorshkov A, Gribovszki K, Harbi A, Hatzidimitriou P, Herak M, Kouteva M, Kuznetzov I, Lokmer I, Maouche S, Marmureanu G, Matova M, Natale M, Nunziata C, Parvez I, Paskaleva I, Pico R, Radulian M, Romanelli F, Soloviev A, Suhadolc P, Triantafyllidis P, Vaccari F (2002) Realistic modeling of seismic input for megacities and large urban areas (the UNESCO/IUGS/IGCP project 414). Episodes 25:160–184

    Google Scholar 

  47. Panza GF, Romanelli F, Vaccari F, Decanini L, Mollaioli F (2003) Seismic ground motion modeling and damage earthquake scenarios, a bridge between seismologists and seismic engineers. OECD Workshop on the Relations between Seismological DATA and Seismic Engineering, Istanbul, 16-18 October 2002, NEA/CSNI/R (2003) 18:241–266

  48. Panza GF, Irikura K, Kouteva M, Peresan A, Wang Z, Saragoni R (2011) Advanced seismic hazard assessment. Pure Appl Geophys Topical Volume. ISBN 978–3–0348-0039-6 and ISBN: 978–3–0348-0091-4

  49. Panza GF, La Mura C, Peresan A, Romanelli F, Vaccari F (2012) Seismic hazard scenarios as preventive tools for a disaster resilient society. Adv Geophys 53:93–165 ISSN: 0065-2687

    Article  Google Scholar 

  50. Panza GF, Peresan A, La Mura C (2013) Seismic hazard and strong ground motion: an operational neo-deterministic approach from national to local scale. Geophysics and Geochemistry, [Eds.UNESCO-EOLSS Joint Committee]. Encyclopedia of Life Support Systems (EOLSS), developed under the auspices of the UNESCO, Eolss Publishers, Oxford

  51. Panza GF, Kossobokov V, Peresan A, Nekrasova A (2014) Why are the standard probabilistic methods of estimating seismic hazard and risks too often wrong. Earthq Haz Risk Disasters. doi:10.1016/B978-0-12-394848-9.00012-2

  52. Parvez IA, Gusev AA, Panza GF, Petukhin AG (2001) Preliminary determination of the interdependence among strong motion amplitude, earthquake magnitude and hypocentral distance for the Himalayan region. Geophys J Int 144:577–596

    Article  Google Scholar 

  53. Parvez IA, Vaccari F, Panza GF (2003) A deterministic seismic hazard map of India and adjacent areas. Geophys J Int 155:489–508

    Article  Google Scholar 

  54. Parvez IA, Romanelli F, Panza GF (2011) Long period ground motion at bedrock level in Delhi city from Himalayan earthquake scenarios. Pure Appl Geophys 168:409–477

    Article  Google Scholar 

  55. Pavlov VM (2009) Matrix impedance in the problem of the calculation of synthetic seismograms for a layered-homogeneous isotropic elastic medium. Izv Phys Solid Earth 45:850–860

    Article  Google Scholar 

  56. Peresan A, Panza GF (2012) Improving earthquake hazard assessment in Italy: an alternative to “Texas sharpshooting”. EOS Transaction. Am Geophys Union 93(51):538

  57. Prasad ASSSRS, Sarkar D, Reddy PR (2002) Identification and usage of multiples in crustal seismics: an application in the Bengal Basin, India. Curr Sci 82:1033–1037

    Google Scholar 

  58. Ravi Kumar M, Mohan G (2005) Mantle discontinuities beneath the Deccan volcanic province. Earth Planet Sci Lett 237:252–263

    Article  Google Scholar 

  59. Ravi Kumar M, Saul J, Sarkar D, Kind R, Shukla AK (2001) Crustal structure of Indian Shield: new constraints from teleseismic receiver function. Geophys Res Lett 28:1339–1342

    Article  Google Scholar 

  60. Soloviev AA, Gvishiani AD, Gorshkov AI, Dobrovolsky MN, Novikova OV (2014) Recognition of earthquake-prone areas: methodology and analysis of the results. Izv Phys Solid Earth 50:151–168

    Article  Google Scholar 

  61. Srinagesh D, Singh SK, Chadha RK, Paul A, Suresh G, Ordaz M, Dattatrayam RS (2011) Amplification of seismic waves in the Central Indo-Gangetic Basin, India. Bull Seismol Soc Am 101:2231–2242. doi:10.1785/0120100327

    Article  Google Scholar 

  62. Tewari HC, Surya Prakasa Rao G, Rajendra Prasad B (2009) Uplifted crust in parts of western India. J Geol Soc India 73:479–488

    Article  Google Scholar 

  63. Vaccari F, Tadili B, El Quadi A, Ramdani M, Ait Brahim M, Limouri M (2001) Deterministic seismic hazard assessment for North Morocco. JSEE 3:1–12

    Google Scholar 

  64. Wang Z (2011) Seismic hazard assessment: issues and alternatives. Pure Appl Geophys 168:11–25. doi:10.1007/s00024-010-0148-3

    Article  Google Scholar 

  65. Zhang Z, Teng J, Romanelli F, Braitenberg C, Ding Z, Zhang X, Fang L, Zhang S, Wu J, Deng Y, Ma T, Sun R, Panza GF (2014) Geophysical constraints on the link between cratonization and orogeny: evidence from the Tibetan Plateau and the North China Craton. Earth Sci Rev 130:1–48

    Article  Google Scholar 

  66. Živčić M, Suhadolc P, Vaccari F (2000) Seismic zonation of Slovenia based on deterministic hazard computation. Pure Appl Geophys 157:171–184

    Article  Google Scholar 

  67. Zuccolo E, Vaccari F, Peresan A, Panza GF (2011) Neo-deterministic and probabilistic seismic hazard assessments: a comparison over the Italian territory. Pure Appl Geophys 168:69–83

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper benefited from financial support by Regione Autonoma Friuli Venezia Giulia (Italy) in the framework of cooperation activities for development and international partnership (Progetti Quadro, L.R. 19/2000). I A Parvez, Ashish and R R Mir also acknowledge ARiEES project of CSIR and thank the head, CSIR 4PI, for consistent support and encouragement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Imtiyaz A. Parvez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parvez, I.A., Magrin, A., Vaccari, F. et al. Neo-deterministic seismic hazard scenarios for India—a preventive tool for disaster mitigation. J Seismol 21, 1559–1575 (2017). https://doi.org/10.1007/s10950-017-9682-0

Download citation

Keywords

  • Seismic hazard
  • India
  • NDSHA
  • Disaster mitigation
  • Ground motion