Skip to main content

Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013


In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5–1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Ágústsson K (2006) Mat á næmni SIL jarðskjálftamælinetsins Hugmyndir um framtíðaruppbyggingu. Icelandic Meteorological Report n° 06014, pp 22

  2. Amorèse D (2007) Applying a change-point detection method on frequency-magnitude distributions. Bull Seismol Soc Am 97. doi:10.1785/0120060181

  3. Bödvarsson R, Lund B (2003) The SIL seismological data acquisition system as operated in Iceland and in Sweden, in: Takanami, T., Kitagawa, G. (Eds.), Methods and applications of signal processing in seismic network operations. Springer, Berlin. number 98 in Lecture Notes in Earth Sciences

  4. Böðvarsson R, Rögnvaldsson ST, Jakobsdóttir SS, Slunga R, Stefánsson R (1996) The SIL data acquisition and monitoring system. Seism Res Lett 67:35–46

    Article  Google Scholar 

  5. Böðvarsson R, Rögnvaldsson ST, Slunga R, Kjartansson E (1999) The SIL data acquisition system-at present an beyond year 2000. Phys Earth Planet Inter 113:89–101

    Article  Google Scholar 

  6. Bondar I, Myers SC, Engdahl ER, Bergman EA (2004) Epicentre accuracy based on seismicnetwork criteria. Geophys J Int 156:483–496

    Article  Google Scholar 

  7. Cao AM, Gao SS (2002) Temporal variations of seismic b-values beneath northeastern Japan island arc. Geophys Res Lett 29. doi:10.1029/2001GL013775

  8. Clauset A, Shalizi CR, Newman MEJ (2009) Power-law distributions in empirical data. SIAM Rev 51:661–703. doi:10.1137/070710111

    Article  Google Scholar 

  9. Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  10. Edwards B, Allmann B, Fäh D, Clinton J (2010) Automatic computation of moment magnitudes for small earthquakes and the scaling of local to moment magnitude. Geophys J Int 183:407–420. doi:10.1111/j.1365-246X.2010.04743.x

    Article  Google Scholar 

  11. Einarsson P, Björnsson S, Foulger G, Stefánsson R, Skaftadóttir T (1981) Seismicity pattern in the South Iceland Seismic Zone. In: Simpson DW, Richards PG (eds) Earthquake prediction, Maurice Ewing Series, vol 4. American Geophysical Union, Washington, D. C, pp. 141–151. doi:10.1029/ME004p0141

    Google Scholar 

  12. Everitt BS (2005) An R and S-PLUS companion to multivariate analysis. Springer, London, p. 221

    Book  Google Scholar 

  13. Gomberg JS, Shedlock KM, Roecker SW (1990) The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bull. Seism. Soc. Am. 80:1605–1628

    Google Scholar 

  14. Gudmundsson, G.B., K.S. Vogfjörd, and Thorbjarnardóttir, B.S. (2006). SIL data status report, in: Prepared—third periodic report, February 1, 2005–July 31, 2005. R. Stefánsson et al. (editors). Icelandic Meteorological Office report, n° 06008, VI-ES-05, Appendix 3, pp 127–131.

  15. Husen, S., and Hardebeck, J.L., (2010). Earthquake location accuracy, Community Online Resource for Statistical Seismicity Analysis. doi:10.5078/corssa-55815573. Available at

  16. Kraft T, Mignan A, Giardini D (2013) Optimization of a large scale microseismic monitoring network in northern Switzerland. Geophys J Int 195:474–490. doi:10.1093/gji/ggt225

    Article  Google Scholar 

  17. Mignan A, Werner MJ, Wiemer S, Chen C-C, Wu Y-M (2011) Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs. Bull Seismol Soc Am 101:1371–1385. doi:10.1785/0120100223

    Article  Google Scholar 

  18. Mignan A (2012) Functional shape of the earthquake frequency-magnitude distribution and completeness magnitude. J Geophys Res 117:B08302. doi:10.1029/2012JB009347

    Article  Google Scholar 

  19. Mignan A and Woessner J (2012) Estimating the magnitude of completeness for earthquake catalogs, Community Online Resource for Statistical Seismicity Analysis, doi: 10.5078/corssa-00180805. Available at

  20. Mignan A, Jiang C, Zechar JD, Wiemer S, Wu Z, Huang Z (2013) Completeness of the Mainland China earthquake catalog and implications for the setup of the China Earthquake Forecast Testing Center. Bull Seismol Soc Am 103:845–859. doi:10.1785/0120120052

    Article  Google Scholar 

  21. Mignan A (2014) The debate on the prognostic value of earthquake foreshocks: a meta-analysis. Sci Rep 4:4099. doi:10.1038/srep04099

    Article  Google Scholar 

  22. Mignan A, Chouliaras G (2014) Fifty years of seismic network performance in Greece (19642013): spatiotemporal evolution of the completeness magnitude. Seismol Res Lett 85(3):657–667. doi:10.1785/0220130209

    Article  Google Scholar 

  23. Mignan A, Chen C-C (2016) The spatial scale of detected seismicity. Pure Appl Geophys 173:117–124. doi:10.1007/s00024-015-1133-7

    Article  Google Scholar 

  24. Panzera F, Lombardo G, Rigano R (2011) Use of different approaches to estimate seismic hazard: the study cases of Catania and Siracusa, Italy. Boll Geofis Teor Appl 52(4):687–706. doi:10.4430/bgta0027

    Google Scholar 

  25. Panzera F, Zechar JD, Vogfjörð K, Eberhard DAJ (2016) A revised earthquake catalogue for South Iceland. Pure Appl Geophys 173(1):97–116. doi:10.1007/s00024-015-1115-9

    Article  Google Scholar 

  26. Pétursson GG and Vogfjörd KS (2009) Attenuation relations for near- and far field peak ground motion (PGV, PGA) and new magnitude estimates for large earthquakes in SW-Iceland, Report n° VI 2009-012, pp 43, ISSN 1670-8261

  27. Rögnvaldsson ST, Slunga R (1993) Routine fault-plane solutions for local networks: a test with synthetic data. Bull. Seism. Soc. Am. 83:1232–1247

    Google Scholar 

  28. Slunga, R., P. Norrman and A. Glans, (1984). Seismicity of Southern Sweden–Stockholm: Försvarets Forskningsanstalt, FOA Report, C2 C20543-T1, p 106

  29. Slunga R, Rognvaldsson ST, Böðvarsson R (1995) Absolute and relative location of similar events with application to microearthquakes in southern Iceland. Geophys J Int 123:409–419

    Article  Google Scholar 

  30. Stefánsson R, Böðvarsson R, Slunga R, Einarsson P, Jakobsdóttir SS, Bungum H, Gregersen S, Havskov J, Hjelme J, Korhonen H (1993) Earthquake prediction research in the South Iceland seismic zone and the SIL project. Bull Seism Soc Am 83:696–716

    Google Scholar 

  31. Tormann T, Wiemer S, Mignan A (2014) Systematic survey of high-resolution b value imaging along Californian faults: inference on asperities. J Geophys Res Solid Earth 119:2029–2054. doi:10.1002/2013JB010867

    Article  Google Scholar 

  32. Vorobieva I, Narteau C, Shebalin P, Beauducel F, Nercessian A, Clouard V, Bouin M-P (2013) Multiscale mapping of completeness magnitude of earthquake catalogs. Bull Seismol Soc Am 103:2188–2202. doi:10.1785/0120120132

    Article  Google Scholar 

  33. Wiemer S, Giardini D, Fäh D, Deichmann N, Sellami S (2009) Probabilistic seismic hazard assessment of Switzerland: best estimates and uncertainties. J Seismol 13(449). doi:10.1007/s10950-008-9138-7

  34. Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull Seismol Soc Am 90:859–869

    Article  Google Scholar 

  35. Woessner J, Wiemer S (2005) Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull Seismol Soc Am 95. doi:10.1785/012040007

  36. Zaliapin I, Ben-Zion Y (2015) Artefacts of earthquake location errors and short-term incompleteness on seismicity clusters in southern California. Geophys J Int 202(3):1949–1968. doi:10.1093/gji/ggv259

    Article  Google Scholar 

Download references


The authors are grateful to the Editor Prof. Mariano Garcia-Fernandez and two anonymous reviewers for their helpful advices that greatly contributed to the improvement of the quality of the paper. The catalogue used in this work is available upon request to the corresponding author. All the maps and graphics were obtained through open-source and freely available Matlab code MapSeis, which can be downloaded from, and statistical computations were performed through R code The authors are also grateful to the Icelandic Meteorological Office for providing access to the SIL catalogue data.

Author information



Corresponding author

Correspondence to Francesco Panzera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panzera, F., Mignan, A. & Vogfjörð, K.S. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013. J Seismol 21, 615–630 (2017).

Download citation


  • Completeness magnitude
  • Earthquake statistics
  • Spatiotemporal analysis
  • Seismic network