Skip to main content
Log in

Bayesian estimation of the Modified Omori Law parameters for the Iranian Plateau

Journal of Seismology Aims and scope Submit manuscript

Cite this article

Abstract

The forecasting of large aftershocks is a preliminary and critical step in seismic hazard analysis and seismic risk management. From a statistical point of view, it relies entirely on the estimation of the properties of aftershock sequences using a set of laws with well-defined parameters. Since the frequentist and Bayesian approaches are common tools to assess these parameter values, we compare the two approaches for the Modified Omori Law and a selection of mainshock–aftershock sequences in the Iranian Plateau. There is a general agreement between the two methods, but the Bayesian appears to be more efficient as the number of recorded aftershocks decreases. Taking into account temporal variations of the b-value, the slope of the frequency-size distribution, the probability for the occurrence of strong aftershock, or larger main shock has been calculated in a finite time window using the parameters of the Modified Omori Law observed in the Iranian Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aki K (1979) Characterization of barriers on an earthquake fault. J Geophys Res Solid Earth 6140–6148, 84(B11)

  • Christophersen A, Smith EG (2008) Foreshock rates from aftershock abundance. Bull Seismol Soc Am 98(5):2133–2148

    Article  Google Scholar 

  • Davidsen J, Gu C, Baiesi M (2015) Generalized Omori–Utsu law for aftershock sequences in southern California. Geophys J Int 201(2):965–978

    Article  Google Scholar 

  • Eberhart-Phillips D (1998) Aftershock sequence parameters in New Zealand. Bull Seismol Soc Am 88(4):1095–1097

    Google Scholar 

  • Gallovič F, Brokešová J (2008) Probabilistic aftershock hazard assessment II: application of strong ground motion simulations. J Seismol 12(1):65–78

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes southern California, with aftershocks removed Possonian? Bull Seismol Soc Am 64:1363–1367

    Google Scholar 

  • Gasperini P, Lolli B (2006) Correlation between the parameters of the aftershock rate equation: implications for the forecasting of future sequences. Phys Earth Planet Inter 156:41–58

    Article  Google Scholar 

  • Glickman ME, van Dyk DA (2007) Basic Bayesian methods topics in biostatistics. Springer, Berlin, pp 319–338

    Book  Google Scholar 

  • Hatano T, Narteau C, Shebalin P (2011) Common dependence on stress for the statistics of granular avalanches and earthquakes. arXiv preprint arXiv:1110.1777

  • Helmstetter A and Shaw BE (2006) Relation between stress heterogeneity and aftershock rate in the rate‐and‐state model. J Geophys Res Solid Earth (1978–2012), 111(B7)

  • Hessami K, Jamali F (2006) Explanatory notes to the map of major active faults of Iran. J Seismol Earthquake Eng 8(1):1–11

    Google Scholar 

  • Holschneider M, Narteau C, Shebalin P, Peng Z and Schorlemmer D (2012) Bayesian analysis of the Modified Omori Law. J Geophys Res Solid Earth (1978–2012), 117(B6).

  • Kagan YY (2004) Short-term properties of earthquake catalogs and models of earthquake source. Bull Seismol Soc Am 94(4):1207–1228

    Article  Google Scholar 

  • Kagan YY, Houston H (2005) Relation between mainshock rupture process and Omori’s law for aftershock moment release rate. Geophys J Int 163(3):1039–1048

    Article  Google Scholar 

  • Kisslinger C, Jones LM (1991) Properties of aftershock sequences in southern California. J Geophys Res Solid Earth 96(B7):11947–11958

    Article  Google Scholar 

  • Lippiello E, Giacco F, Marzocchi W, Godano C, de Arcangelis L (2015) Mechanical origin of aftershocks. Sci Rep 5:15560. doi:10.1038/srep15560

  • Lolli B, Gasperini P (2003) Aftershocks hazard in Italy part I: estimation of time-magnitude distribution model parameters and computation of probabilities of occurrence. J Seismol 7(2):235–257

    Article  Google Scholar 

  • Mirzaei N, Gao M, Chen YT (1998) Seismic source regionalization for seismic zoning of Iran: major seismotectonic provinces. J Earthq Predict Res 7:465–495

    Google Scholar 

  • Nanjo K, Enescu B, Shcherbakov R, Turcotte D, Iwata T and Ogata Y (2007) Decay of aftershock activity for Japanese earthquakes. J Geophys Res Solid Earth 112(B8)

  • Narteau C, Shebalin P and Holschneider M (2002) Temporal limits of the power law aftershock decay rate. J Geophys Res Solid Earth 107(B12), ESE 12-11-ESE 12–14

  • Narteau C, Shebalin P, Holschneider M (2005) Onset of power law aftershock decay rates in southern California. Geophys Res Lett 32(22)

  • Narteau C, Shebalin P, Holschneider M (2008) Loading rates in California inferred from aftershocks. Nonlinear Process Geophys 15(2):245–263

    Article  Google Scholar 

  • Narteau C, Byrdina S, Shebalin P, Schorlemmer D (2009) Common dependence on stress for the two fundamental laws of statistical seismology. Nature 462(7273):642–645

    Article  Google Scholar 

  • Ogata Y (1983) Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum likelihood procedure. J Phys Earth 31:115–124

    Article  Google Scholar 

  • Ogata Y, Jones LM and Toda S (2003) When and where the aftershock activity was depressed: contrasting decay patterns of the proximate large earthquakes in southern California. J Geophys Res Solid Earth 108(B6)

  • Ommi S, Zafarani H, Zare M (2016) Aftershock decay rates in the Iranian plateau. Pure Appl Geophys Accepted

  • Ouillon G and Sornette D (2005) Magnitude‐dependent Omori law: theory and empirical study. J Geophys Res Solid Earth 110(B4)

  • Potanina M, Smirnov V, Bernard P (2011) Patterns of seismic swarm activity in the Corinth Rift in, 2000–2005. Izvestiya. Phys Solid Earth 47(7):610–622

    Article  Google Scholar 

  • Reasenberg PA, Jones LM (1989) Earthquake hazard after a main shock in California. Science 243:1173–1176

    Article  Google Scholar 

  • Reasenberg P, Jones L (1994) Earthquake aftershocks: update. Science 265(5176):1251–1252

    Article  Google Scholar 

  • Shcherbakov R, Turcotte DL, Rundle J,B (2004) A generalized Omori’s law for earthquake aftershock decay. J Geophys Res Lett 31(11):11613

    Article  Google Scholar 

  • Utsu T (1961) A statistical study on occurrence of aftershock. Geophys Mag 30:521–605

    Google Scholar 

  • Utsu T, Ogata Y, Matsu’ura RS (1995) The centenary of the Omori formula for a decay law of aftershock activity. J Phys Earth 43(1):1–33

    Article  Google Scholar 

  • Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering. Commun Online Resour Stat Seism Anal. doi:10.5078/corssa-52382934

    Google Scholar 

  • Wiemer S, Katsumata K (1999) Spatial variability of seismicity parameters in aftershock zones. J Geophys Res Solid Earth 104(B6):13135–13151

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Peter Shebalin and Marina Potanina for very useful discussions. This study was supported by the International Institute of Earthquake Engineering and Seismology (IIEES), Project No. 9612: “Prediction of Aftershock Hazard in the Iranian Plateau using the Statistical Methods.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zafarani.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ommi, S., Zafarani, H. & Smirnov, V.B. Bayesian estimation of the Modified Omori Law parameters for the Iranian Plateau. J Seismol 20, 953–970 (2016). https://doi.org/10.1007/s10950-016-9574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9574-8

Keywords

Navigation