Journal of Seismology

, Volume 20, Issue 2, pp 579–594 | Cite as

Stalagmite growth perturbations from the Kumaun Himalaya as potential earthquake recorders

  • C. P. Rajendran
  • Jaishri Sanwal
  • Kristin D. Morell
  • Mike Sandiford
  • B. S. Kotlia
  • John Hellstrom
  • Kusala Rajendran
Original Article


The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273 ± 410 years BP (2673–1853 BC), 2782 ± 79 years BP (851–693 BC), 2498 ± 117 years BP (605–371 BC), 1503 ± 245 years BP (262–752 AD), 1346 ± 101 years BP (563–765 AD), and 687 ± 147 years BP (1176–1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176–1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050–1250 and 1259–1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.


Stalagmites Speleoseismology Earthquake recurrence Central Indian Himalaya Seismic gap 



This work was funded by the Australia-India Strategic Research Fund. JS was supported by the fast track scheme under the Department of Science and Technology, Govt. of India (No. SR/FTP/TS-97/2009) and BSK by AvH Linkage Project (No. 3-4-FoKoop, 396 DEU/1017420) and Ministry of Earth Sciences, New Delhi. JS and CPR thank Tribhuvan Singh (Pithoragarh) for his assistance during multiple visits to the study site for sampling. This paper has improved considerably after thorough reviews by Katalin Gribovszki and Elisa Kagan, and we are grateful to both of them for their time, patience, and efforts.


  1. Ambraseys N, Jackson D (2003) A note on early earthquakes in northern India and southern Tibet. Curr Sci 84:571–582Google Scholar
  2. Atkinson TC, Harmon RS, Smart PL, Waltham AC (1978) Palaeoclimate and geomorphic implications of 230Th/234U dates on speleothems from Britain. Nature 272:24–28CrossRefGoogle Scholar
  3. Baker A, Smart PL, Ford DC (1993a) Northwest European paleoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeogr Palaeoclimatol Palaeoecol 100:291–301CrossRefGoogle Scholar
  4. Baker A, Smart PL, Edwards RL, Richards DA (1993b) Annual growth banding in a cave stalagmite. Nature 364:518–520CrossRefGoogle Scholar
  5. Banner JL, Guilfoyle A, James EW, Stern LA, Musgrove M (2007) Seasonal variations in modern speleothem calcite growth in Central Texas, USA. Int J Sediment Res 77:615–622. doi: 10.2110/2007.065 CrossRefGoogle Scholar
  6. Becker A, Davenport CA, Eichenberger U, Gilli E, Jeannin PY, Lacave C (2006) Speleoseismology: a critical perspective. J Seismol 10:371–388CrossRefGoogle Scholar
  7. Bilham R, Ambraseys N (2005) Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Curr Sci 88:1658–1663Google Scholar
  8. Braun Y, Kagan E, Bar-Matthews M, Ayalon A, Agnon A (2011) Dating speleoseismites near the Dead Sea Transform and the Carmel Fault: clues to coupling of a plate boundary and its branch. Isr J Earth Sci 58:257–273CrossRefGoogle Scholar
  9. Cadorin JF, Jongmans D, Plumier A, Camelbeeck T, Delaby S, Quinif Y (2001) Modelling of speleothems failure in the Hotton Cave (Belgium). Is the failure earthquake induced? Neth J Geosci 80:315–321Google Scholar
  10. Célérier J, Harrison TM, Webb AAG, Yin A (2009) The Kumaun and Garwhal Lesser Himalaya, India: Part 1. Structure and stratigraph. Geol Soc Am Bull 121:1262–1280. doi: 10.1130/B263441 CrossRefGoogle Scholar
  11. Cheng H, Lawrence Edwards R, Shen CC, Polyak VJ, Asmerom Y, Woodhead JD, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X, Calvin Alexander E Jr (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371–372:82–91CrossRefGoogle Scholar
  12. Delaby S (2001) Palaeoseismic investigations in Belgian caves: Netherlands. J Geogr Sci 80:323–332Google Scholar
  13. Denniston RF, González LA, Asmerom Y, Sharma RH, Reagan MK (2000) Speleothem evidence for changes in Indian summer monsoon precipitation over the last ∼2300 years. Quat Res 53:196–202CrossRefGoogle Scholar
  14. Dorale JA, Edwards RL, Ito E, Gonzalez IE (1998) Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA. Science 282:1871–1874CrossRefGoogle Scholar
  15. Duan W, Kotlia BS, Tan M (2013) Mineral composition and structure of the stalagmite laminae from Chulerasim cave, Indian Himalaya and the significance for palaeoclimatic reconstruction. Quat Int 298:93–97CrossRefGoogle Scholar
  16. Fairchild IJ, Baker A (2012) Speleothem Science. Wiley, Chichester, p 432CrossRefGoogle Scholar
  17. Fleitmann D, Burns SJ, Neff U, Mudelsee M, Mangini A, Matter A (2004) Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat Sci Rev 23:935–945CrossRefGoogle Scholar
  18. Forti P (2001) Seismotectonic and paleoseismic studies from speleothems: the state of the art: Netherlands. J Geosci 80:175–185Google Scholar
  19. Forti P, Postpischl D (1984) Seismotectonic and paleoseismic analyses using karst sediments. Mar Geol 55:145–161CrossRefGoogle Scholar
  20. Geli L, Bard PJ, Julien B (1988) The effect of topography on earthquake ground motion: a review and new results. Bull Seismol Soc Am 78:42–63Google Scholar
  21. Gilli E (1999) Evidence of paleoseismicity in a flowstone of the Observatoire cave (Monaco). Geodin Acta 12:159–168CrossRefGoogle Scholar
  22. Gilli E (2004) Glacial causes of damage and difficulties to use speleothems as palaeoseismic indicators. Geodin Acta 17:229–240CrossRefGoogle Scholar
  23. Gilli E (2005) Review on the use of natural cave speleothems as palaeoseismic or neotectonics indicators. Compt Rendus Geosci 337:1208–1215CrossRefGoogle Scholar
  24. Gilli E, Delange P (2001) Utilisation des speleothemes comme indicateurs de neotectonique oude la paleosismicite. In: Gilli E, Audra P (eds). Tectonique Active et Geomorphologie, Revd’Analyse Spatiale Quantitative et Appliquee, Spec. Publ: 79–90Google Scholar
  25. Gopher A, Ayalon A, Bar-Matthews M, Barkai R, Frumkin A, Karkanas P, Shahack Gross R (2010) The chronology of the late Lower Paleolithic in the Levant based on U/Th ages of speleothems from Qesem Cave, Israel. Quat Geochronol 5:644–656CrossRefGoogle Scholar
  26. Gribovszki K, Kovács K, Mónus P, Shen C-C, Török Á, Brimich L (2013) Estimation of an upper limit on prehistoric peak ground acceleration using the parameters of intact stalagmites and the mechanical properties of broken stalagmites in. Domica cave, Slovakia, Slovensky kras (ACTA Carsologica Slovaca 51(1–2):5–14Google Scholar
  27. Hellstrom J (2003) Rapid and accurate U/Th dating using parallel ion counting multi-collector ICP-MS. J Anal At Spectrom 18:1346–1351CrossRefGoogle Scholar
  28. Hellstrom J (2006) U-Th dating of speleothems with high initial 230Th using stratigraphical constraints. Quat Geochronol 1:289–295CrossRefGoogle Scholar
  29. Holzkämper S, Holmgren K, Lee-Thorp J, Talma A, Mangini A, Partridge T (2009) Late Pleistocene stalagmite growth in Wolkberg Cave, South Africa. Earth Planet Sci Lett 282:212–221. doi: 10.1016/j.epsl/2009.03.016 CrossRefGoogle Scholar
  30. Kagan EJ, Agnon A, Bar-Matthews M, Ayalon A (2005) Dating large infrequent earthquakes by damaged cave deposits. Geology 33:261–264CrossRefGoogle Scholar
  31. Khattri KN (1987) Great earthquakes, seismicity gaps and potential for earthquake disaster along the Himalaya plate boundary. Tectonophysics 138:79–92CrossRefGoogle Scholar
  32. Kotlia BS, Ahmad SM, Zhao JX, Raza WK, Collerson D, Joshi LM, Sanwal J (2012) Climatic fluctuations during the LIA and post-LIA in the Kumaun Lesser Himalaya, India: evidence from a 400 yr old stalagmite record. Quat Int 263:129–138CrossRefGoogle Scholar
  33. Kotlia BS, Singh AK, Joshi LM, Dhaila BS (2014) Precipitation variability in the Indian Central Himalaya during last ca. 4,000 years inferred from a speleothem record: Impact of Indian Summer Monsoon (ISM) and Westerlies. Quat Internat. doi: 10.1016/jquaint/201410066 Google Scholar
  34. Kumar S, Wesnousky S, Rockwell TK, Briggs RW, Thakur VC, Jayangondaperumal R (2006) Paleoseismic evidence of great surface rupture earthquakes along the Indian Himalaya. J Geophys Res 111, B03304. doi: 10.1029/2004JB003309 Google Scholar
  35. Kumar S, Wesnousky S, Jayangondaperumal R, Nakata T, Kumahara Y, Singh V (2010) Paleoseismological evidence of surface faulting along the northeastern Himalayan front, India: timing, size, and spatial extent of great earthquakes. J Geophys Res 115, B12422. doi: 10.1029/2009JB006789 CrossRefGoogle Scholar
  36. Lemeille F, Cushing M, Carbon D, Grellet B, Bitterli T, Flehocand C, Innocent C (1999) Co-seismic ruptures and deformations recorded by speleothems in the epicentral zone of the Basel earthquake. Geol Acta 12:179–191Google Scholar
  37. Mahesh P, Rai SS, Sivaram K, Paul A, Gupta S, Sarma R, Gaur VK (2013) One dimensional reference velocity model and precise locations of earthquake hypocenters in the Kumaon-Garhwal Himalaya. Bull Seismol Soc Am 103:328–339. doi: 10.1785/0120110328 CrossRefGoogle Scholar
  38. Mariethoz G, Kelly BFJ, Baker A (2012) Quantifying the value of laminated stalagmites for paleoclimate reconstructions. Geophys Res Lett 39, L05407. doi: 10.1029/2012GL050986 Google Scholar
  39. Morell KD, Sandiford M, Rajendran CP, Rajendran K, Alimanovic A, Fink D, Sanwal J (2015) Geomorphology reveals active décollement geometry in the central Himalayan seismic gap. Lithosphere. doi: 10.1130/L407.1 Google Scholar
  40. Musgrove ML, Banner JL, Mack LE, Combs DM, James EW, Cheng H, Edwards RL (2001) Geochronology of late Pleistocene to Holocene speleothems from central Texas: Implications for regional paleoclimate. Geol Soc Am Bull 113(12):1532–1543CrossRefGoogle Scholar
  41. Ni J, Barazangi M (1984) Seismotectonics of the Himalayan collision zone: geometry of the underthrusting Indian plate beneath the Himalaya. J Geophys Res 80:1142–1163Google Scholar
  42. Orlanda IJ, Bar-Matthews M, Ayalon A, Matthews A, Kozdon R, Ushikubo T, Valley JW (2012) Seasonal resolution of Eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem. Geochim Cosmochim Acta 89:240–255CrossRefGoogle Scholar
  43. Pandey MR, Tandukar RP, Avouac JP, Lave’ J, Massot JP (1995) Interseimic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett 22:751–754CrossRefGoogle Scholar
  44. Panno SV, Craig CL, Hackley KC, Curry BB, Fouke BW, Zhang Z (2009) Major earthquakes recorded by speleothems in midwestern U.S. caves. Bull Seismol Soc Am 99:2147–2154. doi: 10.1785/0120080261 CrossRefGoogle Scholar
  45. Parameswaran R, Thulasiraman N, Rajendran K, Rajendran CP, Mullick R, Wood M, Lekhak H (2015) Seismotectonics of the April-May 2015 Nepal earthquakes: An assessment based on the aftershock patterns, surface effects and deformation characteristics. Asian J Earth Sci. doi: 10.1016/j.jseaes.2015.07.030 Google Scholar
  46. Postpischl D, Agostini S, Forti P, Quinif Y (1991) Paleoseismicity from karst sediments: the “Grotta del Cervo” cave case study (Central Italy). Tectonophysics 193:33–44CrossRefGoogle Scholar
  47. Railsback LB, Pete DA, Lixin W, Genevieve A, Holdridge NRV (2013) Layer-bounding surfaces in stalagmites as keys to better paleoclimatological histories and chronologies. Int J Speleol 42:167–180CrossRefGoogle Scholar
  48. Rajendran CP, Rajendran K (2011) Revisiting some significant earthquake sources in the Himalaya: Perspectives on past seismicity. Tectonophysics 504:75–88CrossRefGoogle Scholar
  49. Rajendran CP, Rajendran K, Sanwal J, Sandiford M (2013) Archeological and historical database on the medieval earthquakes of the central Himalaya: Ambiguities and inferences. Seismol Res Lett 87:1098–1108CrossRefGoogle Scholar
  50. Rajendran CP, John B, Rajendran K (2015) Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. J Geophys Res 120:1623–1641. doi: 10.1002/2014JB011015 CrossRefGoogle Scholar
  51. Sanwal J, Kotlia BS, Rajendran CP, Masood SA, Rajendran K, Sandiford M (2013) Climatic variability in Central Indian Himalaya for the last ∼1,800 years: Evidence from high-resolution speleothem record. Quat Int 304:183–192CrossRefGoogle Scholar
  52. Sapkota SN, Bollinger L, Klinger Y, Tapponnier P, Gaudemer Y, Tiwari D (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci 6:71–76. doi: 10.1038/ngeo1669 CrossRefGoogle Scholar
  53. Scholz D, Hoffmann DL (2011) StalAge-an algorithm designed for construction of speleothem age models. Quat Geochronol 6:369–382CrossRefGoogle Scholar
  54. Scholz D, Hoffmann DL, Hellstrom J, BronkRamsey C (2012) A comparison of different methods for speleothem age modelling. Quat Geochronol 14:94–104CrossRefGoogle Scholar
  55. Šebela S (2008) Broken speleothems as indicators of tectonic movements. Acta Cardiol 37:51–62Google Scholar
  56. Shen CC, Wu CC, Cheng H, Edwards RL, Hsieh YT, Gallet S, Chang CC, Li TY, Lam DD, Kano A, Hori M, Spötl C (2012) High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols. Geochim Cosmochim Acta 99:71–86. doi: 10.1016/j.gca.2012.09.018 CrossRefGoogle Scholar
  57. Shen CC, Lin K, Duan W, Jiang Z, Partin JW, Edwards LR, Cheng H, Tan M (2013) Testing the annual nature of speleothem banding. Sci Rep 3:2633. doi: 10.1038/srep02633 Google Scholar
  58. Shopov YY, Ford DC, Schwarcz HP (1994) Luminescent microbanding in speleothems: High-resolution chronology and paleoclimate. Geology 22:407–410CrossRefGoogle Scholar
  59. Sinha A, Cannariato KG, Stott LD, Li HC, You CF, Cheng H, Edwards RL, Singh IB (2005) Variability of Southwest Indian summer monsoon precipitation during the Bølling-Allerød. Geology 33:813–816CrossRefGoogle Scholar
  60. Szeidovitz G, Surányi G, Gribovszki K, Bus Z, Leél-Ossy S, Varga Z (2008) Estimation of an upper limit on prehistoric peak ground acceleration using the parameters of intact speleothems in Hungarian caves. J Seismol 12:21–33. doi: 10.1007/s.10950.007.9068.9 CrossRefGoogle Scholar
  61. Treble PC, Chappell J, Shelley JMG (2005) Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers. Geochim Cosmochim Acta 69:4855–4863CrossRefGoogle Scholar
  62. Vaks A, Bar-Matthews M, Ayalon A, Matthews A, Frumkin A, Dayan U, Halicz L, Almogi-Labin A, Schilman B (2006) Paleoclimate and location of the border between Mediterranean climate region and the Saharo–Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel. Earth Planet Sci Lett 249:384–399. doi: 10.1016/j.epsl/2006.07.009 CrossRefGoogle Scholar
  63. Vaks A, Gutareva OS, Breitenbach SFM, Avirmed E, Mason AJ, Thomas AL, Osinzev AV, Kononov AM, Henderson GM (2013) Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science 340:183–186CrossRefGoogle Scholar
  64. Valdiya KS (1980) Geology of Kumaun Lesser Himalaya. Wadia Institute of Himalayan Geology, Dehradun, p 294pGoogle Scholar
  65. Valdiya KS (2010) The making of India – Geodynamic evolution. Macmillan Publishers India Ltd., India, p 816pGoogle Scholar
  66. Wobus CW, Whipple KX, Hodges KV (2006) Neotectonics of the Central Nepalese Himalaya: constraints from geomorphology, detrital 40Ar/39Ar thermochronology and thermal modelling. Tectonics 25:4011. doi: 10.1029/2005TC001935 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • C. P. Rajendran
    • 1
  • Jaishri Sanwal
    • 1
  • Kristin D. Morell
    • 2
    • 3
  • Mike Sandiford
    • 2
  • B. S. Kotlia
    • 4
  • John Hellstrom
    • 2
  • Kusala Rajendran
    • 5
  1. 1.Geodynamics UnitJawaharlal Nehru Centre for Advanced Scientific ResearchBangaloreIndia
  2. 2.School of Earth SciencesUniversity of MelbourneMelbourneAustralia
  3. 3.School of Earth and Ocean SciencesUniversity of VictoriaVictoriaCanada
  4. 4.Centre of Advanced Study in GeologyKumaun UniversityNainitalIndia
  5. 5.Centre for Earth SciencesIndian Institute of ScienceBangaloreIndia

Personalised recommendations