Skip to main content
Log in

Local magnitude calibration of the Hellenic Unified Seismic Network

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

A new relation is proposed for accurate determination of local magnitudes in Greece. This relation is based on a large number of synthetic Wood-Anderson (SWA) seismograms corresponding to 782 regional shallow earthquakes which occurred during the period 2007–2013 and recorded by 98 digital broad-band stations. These stations are installed and operated by the following: (a) the National Observatory of Athens (HL), (b) the Department of Geophysics of the Aristotle University of Thessaloniki (HT), (c) the Seismological Laboratory of the University of Athens (HA), and (d) the Seismological Laboratory of the Patras University (HP). The seismological networks of the above institutions constitute the recently (2004) established Hellenic Unified Seismic Network (HUSN). These records are used to calculate a refined geometrical spreading factor and an anelastic attenuation coefficient, representative for Greece and surrounding areas, proper for accurate calculation of local magnitudes in this region. Individual station corrections depending on the crustal structure variations in their vicinity and possible inconsistencies in instruments responses are also considered in order to further ameliorate magnitude estimation accuracy. Comparison of such calculated local magnitudes with corresponding original moment magnitudes, based on an independent dataset, revealed that these magnitude scales are equivalent for a wide range of values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alsaker A, Kvamme LB, Hansen RA, Dahle A (1991) The ML scale in Norway. Bull Seismol Soc Am 81(2):379–398

    Google Scholar 

  • Anderson JA, Wood HO (1924) A torsion seismometer. J Opt Soc Am Rev Sci Inst 8:817–822

    Article  Google Scholar 

  • Anderson JA, Wood HO (1925) Description and theory of the torsion seismometer. Bull Seism Soc Am 15:1–72

    Google Scholar 

  • AUTH (2015) Geophysical Laboratory of Aristotle University of Thessaloniki, Moment Tensor Solutions, http://geophysics.geo.auth.gr/the_seisnet/ WEBSITE_2005/new-fps.html

  • Bakun WH, Joyner WB (1984) The ML scale in central California. Bull Seism Soc Am 74:1827–1843

    Google Scholar 

  • Bakun WH, Houck ST, Lee WHK (1978) A direct comparison of “synthetic” and actual Wood-Anderson seismograms. Bull Seism Soc Am 68:1199–1202

    Google Scholar 

  • Bisztricsany E (1958) A new method for the determination of the magnitude of earthquakes. Geof Kozl 1:69–96

    Google Scholar 

  • Bockholt BM, Langston CA, Withers M (2015) Local magnitude and anomalous amplitude distance decay in the eastern Tennessee seismic zone. Seism Res Lett 86(3):1040–1050

    Article  Google Scholar 

  • Bollinger GA, Chapman MC, Sibol MS (1993) A comparison of earthquake damage areas as a function of magnitude across the United States. Bull Seim Soc Am 83:1064–1080

    Google Scholar 

  • Bommer JJ, Douglas J, Strasser FO (2003) Style-of-faultink in ground-motion prediction equations. Bull Earth Eng 1(2):171–203

    Article  Google Scholar 

  • Boore DM (1989) The Richter scale: its development and use for determining earthquake source parameters. Tectonophysics 166:1–14

    Article  Google Scholar 

  • Bormann P (ed) (2002) Magnitude of seismic events, in IASPEI New Manual of Seismological Observatory Practice. Geo-ForschungsZentrum, Potsdam, vol. 1, chapter 3, 16–50

  • Brazier RA, Miao Q, Nyblade AA, Ayele A, Langston CA (2008) Local magnitude scale for the Ethiopian Plateau. Bull Seism Soc Am 98(5):2341–2348

    Article  Google Scholar 

  • Das R, Wason HR, Sharma ML (2011) Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Nat Hazards 59:801–810

    Article  Google Scholar 

  • Das R, Wason HR, Sharma ML (2013) General orthogonal regression relations between body-wave and moment magnitudes. Seism Res Lett 84(2):219–224

  • Deichmann N (2006) Local magnitude, a moment revisited. Bull Seismol Soc Am 96(4A):1267–1277

    Article  Google Scholar 

  • EMSC (2015) European-Mediterranean Seismological Center. The database of earthquake mechanisms for European area, http://www.emsc-csem.org/Earthquake/emma.php

  • Fletcher R (1970) A new approach to variable metric algorithms. Comput J 7:308–313

    Google Scholar 

  • Gasperini P, Lolli B, Vanucci G (2013) Empirical calibration of local magnitude data sets versus moment magnitude in Italy. Bull Seism Soc Am 103:2227–2246

    Article  Google Scholar 

  • GCMT (2015) Global Centroid Moment Tensor Project, http://www.globalcmt.org/ CMTsearch.html

  • Grünthal G, Wahlström R (2003) An MW based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J Seismol 7(4):507–531

    Article  Google Scholar 

  • Gutenberg B (1945a) Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull Seism Soc Am 35:3–12

    Google Scholar 

  • Gutenberg B (1945b) Amplitude of P, PP, and S and magnitudes of shallow earthquakes. Bull Seism Soc Am 35:57–69

    Google Scholar 

  • Gutenberg B (1945c) Magnitude determination for deep-focus earthquakes. Bull Seism Soc Am 35:117–130

    Google Scholar 

  • Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geofis 9:1–15

    Google Scholar 

  • Hanks TC, Boore DM (1984) Moment-magnitude relations in theory and practice. J Geophys Res 89:6229–6235

    Article  Google Scholar 

  • Hanks T, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Heaton T, Tajima F, Mori A (1986) Estimating ground motions using recorded accelerograms. Surv Geophys 8:25–83

    Article  Google Scholar 

  • Hutton LK, Boore DM (1987) The ML scale in southern California. Bull Seism Soc Am 77:2074–2094

    Google Scholar 

  • James R (1998) MINUIT: function minimization and error analysis, Reference Manual Ver 94.1, CERN Geneva, Switzerland, 54pp

  • Johnston AC (1996) Seismic moment assessment of earthquakes in stable continental regions—I. instrumental seismicity. Geophys J Int 124:381–414

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987

    Article  Google Scholar 

  • Kanamori H, Jennings PC (1978) Determination of local magnitude, ML, from strong motion accelerograms. Bull Seism Soc Am 68:471–485

    Google Scholar 

  • Kim WY, Wahlström R, Uski M (1989) Regional spectral scaling relations of source parameters for earthquakes in the Baltic Shield. Tectonophysics 166:151–161

    Article  Google Scholar 

  • Kiratzi AA (1984) Magnitude scales for earthquakes in the broader Aegean area. Ph.D. Thesis, Aristotle University of Thessaloniki, 189 pp

  • Kiratzi AA, Papazachos BC (1984) Magnitude scales for earthquakes in Greece. Bull Seism Soc Am 74:969–985

    Google Scholar 

  • Lolli B, Gasperini P, Mele FM, Vannucci G (2015) Recalibration of the distance correction term for local magnitude (ML) computations in Italy. Seism Res Lett 86(5):1383–1392

    Article  Google Scholar 

  • Margaris BN, Papazachos CB (1999) Moment-magnitude relations based on strong-motion records in Greece. Bull Seism Soc Am 89:442–455

    Google Scholar 

  • NEIC (2015) National Earthquake Information Center, Earthquake Hazards Program, URL: http://neic.usgs.gov/neis/epic/index.html (present web-address to obtain earthquake catalogs: http://www.ncedc.org/anss/catalog-search.html)

  • NKUA (2015) Laboratory of Geophysics and Geothermy, National Kapodistrian University of Athens, http://www.geophysics.geol.uoa.gr/frame_en/catal/menucatal_en.html

  • NOA (2015) National Observatory of Athens, Institute of Geodynamics, Earthquake catalogues: http://www.gein.noa.gr/en/seismicity/earthquake-catalogs

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  Google Scholar 

  • Papazachos BC, Kiratzi AA, Karakostas BG (1997) Toward a homogeneous moment-magnitude determination for earthquakes in Greece and surrounding area. Bull Seism Soc Am 87:474–483

    Google Scholar 

  • Papazachos BC, Karakostas VG, Kiratzi AA, Margaris BN, Papazachos CB, Scordilis EM (2002) Uncertainties in the estimation of earthquake magnitudes in Greece. J Seismol 6:557–570

    Article  Google Scholar 

  • Rezapour M, Rezaei R (2011) Empirical distance attenuation and the local magnitude scale for northwest Iran. Bull Seism Soc Am 101(6):3020–3031

    Article  Google Scholar 

  • Richter C (1935) An instrumental earthquake magnitude scale. Bull Seism Soc Am 25:1–32

    Google Scholar 

  • Richter CF (1958) Elementary seismology. W.H. Freeman, San Francisco, 578pp

    Google Scholar 

  • Scordilis E (1985) A microseismicity study of the Serbomacedonian zone and the surrounding area, Ph.D. Thesis, University of Thessaloniki, 250 pp

  • Scordilis EM (2006) Empirical global relations converting MS and mb to moment magnitudes. J Seismol 10:225–236

    Article  Google Scholar 

  • Shedlock KM (1999) Seismic hazard map of North and Central America and the Caribbean. Ann Geofis 42:977–997

    Google Scholar 

  • Thio HK, Kanamori H (1995) Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope. Bull Seismol Soc Am 85:1021–1038

    Google Scholar 

  • Uhrhammer R, Collins E (1990) Synthesis of Wood Anderson seismograms from broadband digital records. Bull Seism Soc Am 80:702–716

    Google Scholar 

  • Uhrhammer RA, Loper SJ, Romanowicz B (1996) Determination of local magnitude using BDSN broadband records. Bull Seism Soc Am 86:1314–1330

    Google Scholar 

  • UPSL (2015) Seismological Laboratory of Patras University, http://seismo.geology.upatras.gr/ heliplots/mttable.html

  • Utsu T (2002) Relationships between magnitude scales. Int Handbook Earthquake Eng Seismol 81:733–746

    Article  Google Scholar 

  • Wessel P, Smith WHF (1995) New version of generic mapping tools released. Eos 76:697–723

    Article  Google Scholar 

  • Zhu L, Helmberger DV (1996) Advancement in source estimation techniques using broadband regional seismograms. Bull Seismol Soc Am 86:1634–1641

    Google Scholar 

Download references

Acknowledgments

We appreciate the thorough review of the anonymous reviewer which has greatly improved the article. A special “thank you” goes to Prof. G. Tsaklidis (Department of Statistics and Operational Research of our University) for his assistance with the MINUIT software. The maps were produced with the GMT software (Wessel and Smith 1995). This research has been co‐financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)–Research Funding Program: THALES. Investing in knowledge society through the European Social Fund. Project SEISMO FEAR HELLARC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Scordilis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scordilis, E.M., Kementzetzidou, D. & Papazachos, B.C. Local magnitude calibration of the Hellenic Unified Seismic Network. J Seismol 20, 319–332 (2016). https://doi.org/10.1007/s10950-015-9529-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-015-9529-5

Keywords

Navigation