Skip to main content

Attenuation of high-frequency body waves in the crust of the Central External Dinarides

Abstract

The Central External Dinarides are known as a tectonically complex region of moderate seismicity where several strong earthquakes occurred in the last century. In order to gain insight into the attenuation of seismic waves in the area, the extended coda normalization method was applied to band-pass-filtered seismograms of local earthquakes recorded at seven seismological broadband stations. Obtained results indicate strong attenuation of direct body waves: Q 0,P = Q P(1 Hz) is found between 21 and 120 and Q 0,S = Q S(1 Hz) is between 46 and 113, whereas the exponent n in the power law of frequency dependence of the quality factor is found in the range of 0.63–1.52 and 0.65–0.97 for n P and n S, respectively. P-waves are, on the average, attenuated more than S-waves. The three island stations (Dugi Otok (DUGI), Žirje (ZIRJ), Hvar (HVAR)) are distinguished by the strong low-frequency P-wave attenuation and more pronounced frequency dependence of the Q P factor (Q 0,S/Q 0,P > 1.7, Q 0,P < 60, n P > n S). The remaining four inland stations (Udbina (UDBI), Morići (MORI), Kijevo (KIJV), Čačvina (CACV)) all exhibit similar qualitative attenuation properties for P- and S-waves (n P ≈ n S ≈ 1 and Q 0,S ≈ Q 0,P), although individual values of the Q-factors vary notably within this group. Low-frequency attenuation of direct S-waves in the crust is stronger than mean attenuation of scattered coda waves in the lithosphere, especially for long coda lapse times. The results are also qualitatively in agreement with the thermal regime in the area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Adam L, Batzle M, Lewallen KT, van Wijk K (2009) Seismic wave attenuation in carbonates. J Geophys Res 114, B06208. doi:10.1029/2008JB005890

    Google Scholar 

  • Aki K (1980) Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz. Phys Earth Planet Inter 21:50–60

  • Aki K, Chouet B (1975) Origin of coda waves: source, attenuation, and scattering effects. J Geophys Res 80:3322–3342

    Article  Google Scholar 

  • Barton N (2007) Rock quality, seismic velocity, attenuation and anisotropy. Taylor & Francis Group, London

    Google Scholar 

  • Castro RR, Pacor F, Sala A, Petrungaro C (1996) S wave attenuation and site effects in the region of Friuli, Italy. J Geophys Res 101:22355–22369

    Article  Google Scholar 

  • Castro RR, Monarchesi G, Mucciarelli M, Trojani L, Pacor F (1999) P- and S-wave attenuation in the region of Marche, Italy. Tectonophysics 302:123–132

    Article  Google Scholar 

  • Castro RR, Massa M, Augliera P, Pacor F (2008) Body-wave attenuation in the region of Garda, Italy. Pure Appl Geophys 165:1351–1366. doi:10.1007/s00024-008-0365-1

    Article  Google Scholar 

  • Chung T-W, Sato H (2001) Attenuation of high-frequency P and S waves in the crust of Southeastern South Korea. Bull Seismol Soc Am 91:1867–1874

    Article  Google Scholar 

  • Dasović I, Herak M, Herak D (2012) Attenuation of coda waves in the contact zone between the Dinarides and the Adriatic Microplate. Stud Geophys Geod 56:231–247. doi:10.1007/s11200-010-0077-8

    Article  Google Scholar 

  • Dasović I, Herak M, Herak D (2013) Coda-Q and its lapse time dependence analysis in the interaction zone of the Dinarides, the Alps and the Pannonian basin. J Phys Chem Earth 63:47–54. doi:10.1016/j.pce.2013.03.001

    Article  Google Scholar 

  • De Lorenzo S, Del Pezzo E, Bianco F (2013) Q c, Q β, Q i and Q s attenuation parameters in the Umbria-Marche (Italy) region. Phys Earth Planet Inter 218:19–30. doi:10.1016/j.pepi.2013.03.002

  • Grandić S, Kratković I, Rusan I (2010) Hydrocarbon potential assessment of the slope deposits along the SW Dinarides carbonate platform edge. Nafta 61:325–338

    Google Scholar 

  • Hatzidimitriou PM (1995) S-wave attenuation in the crust in Northern Greece. Bull Seism Soc Am 85:1381–1387

    Google Scholar 

  • Hauksson E, Shearer PM (2006) Attenuation models (Q P and Q S ) in three dimensions of the southern California crust: inferred fluid saturation at seismogenic depths. J Geophys Res 111, B05302. doi:10.1029/2005JB003947

    Google Scholar 

  • Havskov J, Ottemöller L (2010) Routine data processing in earthquake seismology. Springer, Science+Business Media B.V

    Book  Google Scholar 

  • Herak M (1991) Lapse time dependent Qc-spectra observed in the Dinarides region (Yugoslavia). Phys Earth Planet Inter 67:303–312

    Article  Google Scholar 

  • Herak D, Herak M (1995) Body-wave velocities in the circum-Adriatic region. Tectonophysics 241:121–141

    Article  Google Scholar 

  • Herak M, Herak D, Markušić S (1996) Revision of the earthquake catalogue and seismicity of Croatia, 1908-1992. Terra Nova. 8:86–94

    Article  Google Scholar 

  • Herak D, Herak M, Prelogović E, Markušić S, Markulin Ž (2005) Jabuka island (Central Adriatic Sea) earthquakes of 2003. Tectonophysics 398:167–180. doi:10.1016/j.tecto.2005.01.007

    Article  Google Scholar 

  • Herak M, Allegretti I, Herak D, Ivančić I, Kuk V, Marić K, Markušić S, Sović I (2011) Republika Hrvatska, Karta potresnih područja (Republic of Croatia, Seismic Hazard Maps; in Croatian). University of Zagreb, Faculty of Science, Department of Geophysics. http://seizkarta.gfz.hr/karta.php. Accessed 19 December 2014. In: Eurocode 8: design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. National Annex. Croatian Standards Institute, pp 28

  • Horasan G, Boztepe-Güney A (2004) S-wave attenuation in the Sea of Marmara, Turkey. Phys Earth Planet Inter 14:215–224. doi:10.1016/j.pepi.2004.01.004

  • Hough SE, Anderson JG (1988) High-frequency spectra observed at Anza, California: implications for Q structure. Bull Seismol Soc Am 78:692–707

    Google Scholar 

  • Ivančić I, Herak D, Markušić S, Sović I, Herak M (2006) Seismicity of Croatia in the period 2002–2005. Geofizika 23:87–103

    Google Scholar 

  • Jelić K, Kevrić I, Krasić O (1995) Temperatura i toplinski tok u tlu Hrvatske. Proc First Croat Geol Congr, Opatija, Croatia 1:245–249

  • Kang IB, McMechan GA (1994) Separation of intrinsic and scattering Q based on frequency-dependent amplitude ratios of transmitted waves. J Geophys Res 99:23875–23885

  • Kastelic V, Kiratzi A, Benetatos C, Živčić M, Bajc J (2010) Shear wave Q determination for the upper crust of the western and central Slovenia. Sci Ann Sch Geol Univ Thessaloniki, Proc XIX CBGA Congr, Spec volume 99:377–385

    Google Scholar 

  • Kuk V, Prelogović E, Dragičević I (2000) Seismotectonically active zones in the Dinarides. Geol Croat 53:295–303

    Google Scholar 

  • Kumar N, Shonkholen M, Mukhopadhyay S (2014) Estimation of Q p and Q s of Kinnaur Himalaya. J Seismol 18:47–59. doi:10.1007/s10950-013-9399-7

    Article  Google Scholar 

  • Lenkey L, Dövényi P, Horváth F, Cloetingh SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec Publ Series 3:29–40

    Article  Google Scholar 

  • Mahood M, Hamzehloo H (2011) Variation of intrinsic and scattering attenuation of seismic waves with depth in the Bam region, East-Central Iran. Soil Dyn Earthq Eng 31:1338–1346. doi:10.1016/j.soildyn.2011.05.010

    Article  Google Scholar 

  • Mahood M, Hamzehloo H, Doloei GJ (2009) Attenuation of high frequency P and S waves in the crust of the East-Central Iran. Geophys J Int 179:1669–1678. doi:10.1111/j.1365246X.2009.04363.x

    Article  Google Scholar 

  • Markušić S, Herak M (1999) Seismic zoning of Croatia. Nat Hazards 18:269–285

    Google Scholar 

  • Padhy S (2009) Characteristics of body-waves attenuations in the Bhuj crust. Bull Seismol Soc Am 99:3300–3313. doi:10.1785/0120080337

    Article  Google Scholar 

  • Padhy S, Subhadra N (2010) Attenuation of high-frequency seismic waves in northeast India. Geophys J Int 181:453–467. doi:10.1111/j.1365-246X.2010.04502.x

    Article  Google Scholar 

  • Pikelj K, Hernitz-Kučenjak M, Aščić Š, Juračić M (2015) Surface sediment around the Jabuka Islet and the Jabuka Shoal: evidence of Miocene tectonics in the Central Adriatic Sea. Mar Geol 359:120–133. doi:10.1016/j.margeo.2014.11.003

    Article  Google Scholar 

  • Polatidis A, Kiratzi A, Hatzidimitriou P, Margaris B (2003) Attenuation of shear-waves in the back-arc region of the Hellenic arc for frequencies from 0.6 to 16 Hz. Tectonophysics 367:29–40. doi:10.1016/S0040-1951(03)00136-7

    Article  Google Scholar 

  • Sato H, Fehler MC, Maeda T (2012) Seismic wave propagation and scattering in the heterogeneous earth: second edition. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Singh C, Singh A, Srinivasa Bharathi VK, Bansal AR, Chadha RK (2012) Frequency-dependent body wave attenuation characteristics in the Kumaun Himalaya. Tectonophysics 524–525:37–42. doi:10.1016/j.tecto.2011.12.013

    Article  Google Scholar 

  • Stein S, Wysession M (2003) An introduction to seismology, earthquakes, and earth structure. Blackwell Publishing, Oxford

    Google Scholar 

  • Stipčević J (2012) Crustal and upper mantle structure beneath the Dinarides determined from broadband receiver function. Dissertation (in Croatian with English abstract), Faculty of Science, University of Zagreb

  • Stipčević J, Tkalčić H, Herak M, Markušić S, Herak D (2011) Crustal and uppermost mantle structure beneath the External Dinarides, Croatia, determined from teleseismic receiver functions. Geophys J Int 185:1103–1119. doi:10.1111/j.1365-246X.2011.05004.x

    Article  Google Scholar 

  • Tesauro M, Kaban MK, Cloetingh SAPL (2009) A new thermal and rheological model of the European lithosphere. Tectonophysics 476:478–495. doi:10.1016/j.tecto.2009.07.022

    Article  Google Scholar 

  • Toksöz MN, Johnston DH, Timur A (1979) Attenuation of seismic waves in dry and saturated rocks: I Laboratory measurements. Geophysics 44:681–690

    Article  Google Scholar 

  • Tomljenović B, Csontos L, Márton E, Márton P (2008) Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia. In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic aspects of the Alpine-Dinaride-Carpathian system. Geol Soc Lond Spec Publ, 298:145–167. doi:10.1144/SP298.8

  • Tripathi JN, Priyamvada S, Sharma ML (2014) Attenuation of high-frequency P and S waves in Garhwal Himalaya, India. Tectonophysics 636:216–227. doi:10.1016/j.tecto.2014.08.015

    Article  Google Scholar 

  • Tselentis GA (1998) Intrinsic and scattering seismic attenuation in W. Greece. Pure Appl Geophys 153:703–712

    Article  Google Scholar 

  • Tsujiura M (1966) Frequency analysis of the seismic waves, I. Bull Earthq Res Inst Tokyo Univ 44:873–891

    Google Scholar 

  • Ustaszewski K, Schmid SM, Fügenschuh B, Tischler M, Kissling E, Spakman W (2008) A map-view restoration of the Alpine-Carpathian-Dinaridic system for the Early Miocene. Swiss J Geosci 101:S273–S294. doi:10.1007/s00015-008-1288-7

    Article  Google Scholar 

  • Van der Lee S, Marone F, van der Meijde M, Giardini D, Deschamps A, Margheriti L, Burkett P, Solomon SC, Alves PM, Chouliaras M, Eshwedi A, Suleiman AS, Gashut H, Herak M, Ortiz R, Davila JM, Aguirre A, Vila J, Yelles K (2001) Eurasia-Africa plate boundary region yields new seismographic data. EOS Trans AGU 82:637–646

    Google Scholar 

  • Wennerberg L (1993) Multiple scattering interpretation of coda Q measurements. Bull Seismol Soc Am 83:279–290

    Google Scholar 

  • Winkler K, Nur A (1979) Pore fluids and seismic attenuation in rocks. Geophys Res Lett 6:1–4. doi:10.1029/GL006i001p00001

    Article  Google Scholar 

  • Winkler KW, Nur A (1982) Seismic attenuation: effects of pore fluids and frictional sliding. Geophysics 47:1–15. doi:10.1190/1.1441276

    Article  Google Scholar 

  • Yoshimoto K, Sato H, Ohtake M (1993) Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda-normalization method. Geophys J Int 114:165–174

    Article  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their constructive criticism of the manuscript. We also thank the Croatian Seismological Survey for the use of the data. We gratefully acknowledge the financial support from the Ministry of Science, Education and Sports of the Republic of Croatia, grants 119-1193086-1315 and 119-1193086-1314, and annual research subsidy grants from the University of Zagreb.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Iva Dasović or Marijan Herak.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dasović, I., Ruščić, M., Herak, D. et al. Attenuation of high-frequency body waves in the crust of the Central External Dinarides. J Seismol 19, 849–860 (2015). https://doi.org/10.1007/s10950-015-9498-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-015-9498-8

Keywords

  • Body waves
  • Attenuation
  • Coda normalization method
  • Crust
  • Dinarides
  • Croatia